1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bingel [31]
3 years ago
14

Zero is a solution for which inequality?

Mathematics
1 answer:
Helen [10]3 years ago
8 0

Step-by-step explanation:

0 is right in the middle of all negative and all positive numbers.

0 is therefore larger than any negative number and smaller than any positive number.

and 0×n = 0, always, no matter what n is.

-0 = +0 = 0.

so, of course, only

4.1m > -16.4

is correct.

0 is not greater than 16.4.

0 is not smaller than -16.4.

You might be interested in
A satellite flies 55738 miles in 9.61 hours. How many miles has it flown in 14.17<br> hours?
stira [4]

Answer:

82186

Step-by-step explanation:

First divide 55738/9.61 = 5800

Multiply 5800*14.17 = 82186

Was this helpful?

5 0
3 years ago
Find <br><img src="https://tex.z-dn.net/?f=%20%5Cfrac%7Bdy%7D%7Bdx%7D%20" id="TexFormula1" title=" \frac{dy}{dx} " alt=" \frac{d
nataly862011 [7]

Answer:

\displaystyle y' = 2x + 3\sqrt{x} + 1

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}<u> </u>

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

<em />\displaystyle y = (x + \sqrt{x})^2<em />

<em />

<u>Step 2: Differentiate</u>

  1. Chain Rule:                                                                                                        \displaystyle y' = 2(x + \sqrt{x})^{2 - 1} \cdot \frac{d}{dx}[x + \sqrt{x}]
  2. Rewrite [Exponential Rule - Root Rewrite]:                                                     \displaystyle y' = 2(x + x^{\frac{1}{2}})^{2 - 1} \cdot \frac{d}{dx}[x + x^{\frac{1}{2}}]
  3. Simplify:                                                                                                             \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot \frac{d}{dx}[x + x^{\frac{1}{2}}]
  4. Basic Power Rule:                                                                                             \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot (1 \cdot x^{1 - 1} + \frac{1}{2}x^{\frac{1}{2} - 1})
  5. Simplify:                                                                                                             \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot (1 + \frac{1}{2}x^{-\frac{1}{2}})
  6. Rewrite [Exponential Rule - Rewrite]:                                                              \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot (1 + \frac{1}{2x^{\frac{1}{2}}})
  7. Multiply:                                                                                                             \displaystyle y' = 2[(x + x^{\frac{1}{2}}) + \frac{x + x^{\frac{1}{2}}}{2x^{\frac{1}{2}}}]
  8. [Brackets] Add:                                                                                                 \displaystyle y' = 2(\frac{2x + 3x^{\frac{1}{2}} + 1}{2})
  9. Multiply:                                                                                                             \displaystyle y' = 2x + 3x^{\frac{1}{2}} + 1
  10. Rewrite [Exponential Rule - Root Rewrite]:                                                     \displaystyle y' = 2x + 3\sqrt{x} + 1

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

4 0
3 years ago
Pls help I don't get it
attashe74 [19]

[They got it, putting this here so it stops showing up as unanswered]

5 0
2 years ago
4(n+2)=2(n+10)<br> solve
elena-14-01-66 [18.8K]
N Equals 2/3
.
Hope it Helps ;3

















7 0
4 years ago
Read 2 more answers
Which planet is about 10 times as far as earth is from the sun
Andrej [43]
I think is mercury because its near the sun
4 0
3 years ago
Other questions:
  • Y = 2x + 3<br> 2y = 4x + 6<br><br> The system of equations has _____ solution(s).
    6·1 answer
  • Use the quadratic function to predict f(x) if x equals 2. f(x) = −3x2 + 180x − 285
    6·2 answers
  • Everything you need to know is in the picture ( help on 3 and 4)
    7·2 answers
  • Find x if xtan30.2=600tan24.1​
    6·1 answer
  • What is the value of the lower quartile? <br> a.0<br> b.8<br> c.6<br> d.2<br> thank you!
    6·1 answer
  • Please help me with this function on a closed interval!
    8·1 answer
  • 18. A secretary works a 40-hour week and is paid a basic rate of $22.50 per hour.
    14·1 answer
  • 2 x ² + 16x+63 2x² +19x+a​
    14·2 answers
  • Nine cards are numbered from 1 to 9 and placed in a box. One card is selected at random and not replaced. Another card is random
    10·2 answers
  • Define Miller for the perimeter P of a rectangle with length L and width W is p equals 2L + 2W. which of the following is the fo
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!