Answer:
a) 1.61 mol
b) Al is limiting reactant
c) HBr is in excess
Explanation:
Given data:
Moles of Al = 3.22 mol
Moles of HBr = 4.96 mol
Moles of H₂ formed = ?
What is limiting reactant =
What is excess reactant = ?
Solution:
Chemical equation:
2Al + 2HBr → 2AlBr + H₂
Now we will compare the moles:
Al : H₂
2 : 1
3.22 : 1/2×3.22 = 1.61 mol
HBr : H₂
2 : 1
4.96 : 1/2×4.96 = 2.48 mol
The number of moles of H₂ produced by Al are less it will be limiting reactant while HBr is present in excess.
Moles of H₂ :
Number of moles of H₂ = 1.61 mol
Answer:
d. Hydrophobic molecules are attracted to each other.
Explanation:
The term “hydrophobic effect” is associated with the spontaneous tendency of macromolecules, such as proteins, to prefer a conformation in an aqueous medium, with hydrophobic groups facing the interior of the mac romolecule, favoring attractive intramolecular interactions, and hydrophilic groups exposed on the surface, for maximize interactions with water molecules in the medium. This is because the hydrophobic molecules are attracted to each other, allowing them to turn inward.
Answer:
a)
,
, b)
, 
Explanation:
a) The ideal gas is experimenting an isocoric process and the following relationship is used:

Final temperature is cleared from this expression:


The number of moles of the ideal gas is:



The final temperature is:


The final pressure is:



b) The ideal gas is experimenting an isobaric process and the following relationship is used:

Final temperature is cleared from this expression:




The final volume is:



The product of the complete combustion of any fuel (in this case, acetylene) are indeed water and carbon dioxide.
Balancing the combustion reaction,
C2H2 +(5/2) O2 --> 2CO2 + H2O
The number of moles of C2H2 will be,
(12 g) x (1 mole/26 g) = 6/13 mole
Then, the number of moles of O2 is,
(12 g) x (1 mole/32 g) = 3/8 mole
Therefore the limiting reaction is the O2. Getting the amount of CO2 and H2O produced from balancing,
CO2 = (3/8 moles) x (2 moles CO2/ 5/2 mole O2)(44 g/ 1 mole) = 52.8 g
H2O = (3/8 moles) x (1 mole / 5/2 mole O2)(18 g / 1 mole) = 2.7 g
Answer:
hand picking
Explanation:
as stone is bigger in size we can see them with our eyes so we can handpick it