then the electrons and protons would have a even amount of negetive electric charges
Your question isn't quite clear, but if you're wondering if a chemical is polar or non-polar, you simply draw a VSEPR sketch and draw arrows where the bonds are. Only draw arrows between atoms, NOT between an atom and a lone pair of electrons. The arrow should point to the most electronegative atom (you should be given an electronegativity scale). Afterwards, you add up the arrows as vectors, and look at the sum of the vectors. If the sum is zero (CH4 is a good example), the chemical is non-polar. If the sum is a vector, the chemical is polar (H2O, or water, is polar).
Answer:
By adding the solute in to solution boiling point is increased while freezing point is decreased.
Explanation:
When solute in added into the solvent the boiling point of solvent increases for example,
Water is boiled at 100 °C, when sodium chloride is added its boiling point increased. Ions of salt interact with solvent and prevent the water molecules to escape from the surface and form gas molecules. In order to make it boiled solution must be heated above 100 °C.
But there is different case with freezing point. Freezing point is the state in which substance converted into the solid. At given temperature when solute is added into the solvent it prevent the formation of solid. It required time to decrease the temperature first and as the temperature is decreases solid is formed.
Explanation:
please mark me as brainlest
Answer:
Higher frequency
Explanation:
We can imagine a chemical bond between two atoms as if it were two balls connected by a spring.
According to Hooke's Law, the stretching frequency f is

where µ is the reduced mass of the system

The strength of the bond is analogous to k, the force constant of the spring. Then,

Thus, the stronger the bond, the greater the frequency of vibration.