Answer:
B: Transfer of protons
Explanation:
<em>
An acid</em> by definition is a substance that can transfer a proton to another substance while a base is a substance that cab accept a proton.
<em>A proton</em> is a subatomic particle with a positive charge, present in the nucleus of an atom.
<em>An example</em> of an acid base reaction is dissolving sulfuric acid (H2SO4) in water
A proton from sulfuric acid is transferred to water. This proton transfer reaction between the strong acid and weak base, converts water into hydronium ion and sulfuric acid into bisulfate ion.
Chemical reaction:
H2SO4+H2O → HSO4−+H3O+
First calculate the volume of the rectangular prism by
multiplying its length, width and height. The volume of the prism is 8 cm^3.
Since density is known to be mass over volume, just multiply the given density
with the volume. The mass of the prism then is 960 grams.
Answer:
10 electrons
Explanation:
The d sublevel has 5 orbitals, so can contain 10 electrons max. And the 4 sublevel has 7 orbitals, so can contain 14 electrons max. In the picture below, the orbitals are represented by the boxes. You can put two electrons in each box.
Answer:
The expected ratio of half-lives for a reaction will be 5:1.
Explanation:
Integrated rate law for zero order kinetics is given as:
![k=\frac{1}{t}([A_o]-[A])](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B1%7D%7Bt%7D%28%5BA_o%5D-%5BA%5D%29)
= initial concentration
[A]=concentration at time t
k = rate constant
if, ![[A]=\frac{1}{2}[A_o]](https://tex.z-dn.net/?f=%5BA%5D%3D%5Cfrac%7B1%7D%7B2%7D%5BA_o%5D)
, the equation (1) becomes:
![t_{\frac{1}{2}}=\frac{[A_o]}{2k}](https://tex.z-dn.net/?f=t_%7B%5Cfrac%7B1%7D%7B2%7D%7D%3D%5Cfrac%7B%5BA_o%5D%7D%7B2k%7D)
Half life when concentration was 0.05 M=
Half life when concentration was 0.01 M=
Ratio of half-lives will be:
![\frac{t_{\frac{1}{2}}}{t_{\frac{1}{2}}'}=\frac{\frac{[0.05 M]}{2k}}{\frac{[0.01 M]}{2k}}=\frac{5}{1}](https://tex.z-dn.net/?f=%5Cfrac%7Bt_%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D%7Bt_%7B%5Cfrac%7B1%7D%7B2%7D%7D%27%7D%3D%5Cfrac%7B%5Cfrac%7B%5B0.05%20M%5D%7D%7B2k%7D%7D%7B%5Cfrac%7B%5B0.01%20M%5D%7D%7B2k%7D%7D%3D%5Cfrac%7B5%7D%7B1%7D)
The expected ratio of half-lives for a reaction will be 5:1.