Answer:
gaseous CO2 bubbles out of the solution
Explanation:
We already know that the dissolution of a gas in water is exothermic. Hence, when the temperature of a solution containing a gas is increased, the solubility of the gas decreases and the gas bubbles out of the solution.
Similarly, the dissolution of KNO3 in water is endothermic. This implies that the solubility of the solid increases with increasing temperature.
Thus the solid becomes more soluble at 75°.
We can use combined gas laws to solve for the volume of the gas

where P - pressure, V - volume , T - temperature and k - constant

parameters for the first instance are on the left side and parameters for the second instance are on the right side of the equation
T1 - temperature in Kelvin - 20 °C + 273 = 293 K
T2 - 40 °C + 273 = 313 K
substituting the values

V = 17.8 L
volume of the gas is 17.8 L
A) Magnesium + Chlorine -> Magnesium chloride ( Mg + Cl2 -> MgCl2)
b) Potassium + Oxygen -> Potassium oxide
( 2K + O2 -> K2O )
c) Sodium + Bromine -> Sodium bromide
( 2Na + Br2 -> 2NaBr)
d) Carbon + Oxygen -> Carbon dioxide
( C + O2 -> CO2 ) This reaction occurs when heated.
Answer:
The solubility of gases in liquids decreases with increasing temperature. Conversely, adding heat to the solution provides thermal energy that overcomes the attractive forces between the gas and the solvent molecules, thereby decreasing the solubility of the gas; pushes the reaction in Equation 4 to the left