Answer:
Option C
Step-by-step explanation:
You forgot to attach the expression that models the cost of the camping trip during the three days. However, by analyzing the units, the answer can be reached.
The total cost has to be in units of $.
There are two types of costs in the problem:
Those that depend on the number of days ($/day
)
Those that depend on the number of students and the number of days ($/(student * day))
If there are 3 days of camping and b students, then you have to multiply the costs that depend on the days by the number of days (3), and the costs that depend on the number of students you have to multiply them by 'b'
So, if the costs that must be multiplied by 'b' are only those that depend on the number of students, the coefficient of b must be:
3 days (Cost of training + Cost of food Miscellaneous expenses :).
Therefore the correct answer is option C:
C. It is the total cost of 3 days per student of Mr. Brown, with training, food and miscellaneous expenses.
The expression that represents the total expense should have a formula similar to this:
![y = (3 days) *([\frac{20.dollars}{(day * student)} + \frac{30.dollars}{(student * day)} + \frac{50.dollars}{(student * day)}] b + \frac{200}{day}) + 1050.dollars](https://tex.z-dn.net/?f=y%20%3D%20%283%20days%29%20%2A%28%5B%5Cfrac%7B20.dollars%7D%7B%28day%20%2A%20student%29%7D%20%2B%20%5Cfrac%7B30.dollars%7D%7B%28student%20%2A%20day%29%7D%20%2B%20%5Cfrac%7B50.dollars%7D%7B%28student%20%2A%20day%29%7D%5D%20b%20%2B%20%5Cfrac%7B200%7D%7Bday%7D%29%20%2B%201050.dollars)
y = 3 ($ 100b + $ 200) + $ 1050
3/4 ( (-50+2)/5)
= 3/4 ( -48/5)
= 3/4 * -48/5
= -36/5
Answer:
-5
Step-by-step explanation:
To find the common difference, take the second term and subtract the first term
-2 - 3 = -5
Check with the third term and the second term
-7 - (-2) = -7 +2 = -5
The common difference is -5
Answer:
show everything
Step-by-step explanation:
copy and paste all of all of the problem