Answer:
The correct answer is 231 Mpa i.e option a.
Explanation:
using the equation of torsion we Have

where,
= shear stress at a distance 'r' from the center
T = is the applied torque
= polar moment of inertia of the section
r = radial distance from the center
Thus we can see that if a point is located at center i.e r = 0 there will be no shearing stresses at the center due to torque.
We know that in case of a circular section the maximum shearing stresses due to a shear force occurs at the center and equals

Applying values we get

C. 90 m
30m per second... and it takes 3 seconds
3x30= 90
But the fact is that an accelerating object is an object that is changing it’s velocity.. for this reason , it can be safely concluded that an object moving in a circle at constant speed is indeed accelerating. It is accelerating because the direction of the velocity vector is changing .
Answer:
The length of the incline is 3.504 meters.
Explanation:
Let suppose that Julietta's ball decelerates uniformly, then we determine the length of the incline is determined by the following equation of motion:
(Eq. 1)
Where:
- Length of the incline, measured in meters.
- Initial speed of the ball, measured in meters per second.
- Aceleration of the ball, measured in meters per square second.
- Time, measured in second.
If we know that
,
and
, then the length of the incline is:


The length of the incline is 3.504 meters.