Answer:
The magnetic field at a distance of 19.8 cm from the wire is 1.591 mT
Explanation:
Given;
first magnetic field at first distance, B₁ = 2.50 mT
first distance, r₁ = 12.6 cm = 0.126 m
Second magnetic field at Second distance, B₂ = ?
Second distance, r₂ = ?
Magnetic field for a straight wire is given as;
Where:
μ is permeability
B is magnetic field
I is current flowing in the wire
r distance to the wire
Therefore, the magnetic field at a distance of 19.8 cm from the wire is 1.591 mT
The actual weight of the gas = apparent weight + weight.
The actual weight = + W
Given that a plastic bag is massed. It is then filled with a gas which is insoluble in water and massed again.
If the apparent weight of the gas is the difference between these two masses, then let the apparent weight =
The gas is squeezed out of the bag to determine its volume by the displacement of water. Since
density = mass / volume
The density of water is 1000 kg/
we can get the mass of the gas by making m the subject of the formula.
W = mg
The actual weight of the gas = apparent weight + weight
That is,
The actual weight = + W
Learn more about density here: brainly.com/question/406690
The work done is by the centripetal force on mass m during an angular displacement of 2π revolutions mv²2π /r J
Centripetal force - a force acts on an moving object in circular path.
the centripetal force is given by
F= mv²/r (equation1)
Work done is given by
W = Fd (equation 2)
d = 2π
work is done by the centripetal force on mass m during an angular displacement of 2π revolutions is given by:
to calculate work done using equation 1 in 2 we get
W = mv² d/r
W = mv² × 2π /r J
The work done is by the centripetal force on mass m during an angular displacement of 2π revolutions mv²2π /r J
To know more about centripetal force :
brainly.com/question/13031430
#SPJ4