As this happens over twelve seconds, you would take the total difference in velocities and divide it by twelve to find the change per second
44.0 m/s - 2.0 m/s = 42.0 m/s
42.0 m/s / 12 s = 3.5 m/s2
the acceleration of the rock would be 3.5 m/s2
<span>The core finally cools into a white dwarf, then a black dwarf. This is what happens when a normal-sized star dies. If a really huge star dies, it has so much mass that after the helium is used up, it still has enough carbon to fuse it into heavy elements like iron. When the core turns to iron, it no longer burns.
please give me </span>Brainliest answer?
Answer:
v=s/t
s=vt
t=s/v
t=(120×10‐³)/172.8
(the distance meters has been changed to kilometres)
t=1/1440 hrs
Given ,
Answer:
Explanation:
The speed of the water in the large section of the pipe is not stated
so i will assume 36m/s
(if its not the said speed, input the figure of your speed and you get it right)
Continuity equation is applicable for ideal, incompressible liquids
Q the flux of water that is Av with A the cross section area and v the velocity,
so,


the diameter decreases 86% so


Thus, speed in smaller section is 48.6 m/s
The same bird on the tree has more gravitational potential energy. This is because it is at a higher distance from the ground as it is on the tree, than when it is on the ground.
Considering also the formula for Gravitational Potential Energy GPE = mgh
For the bird on the ground, h =0, therefore GPE = m*9.8*0 = 0
For that on the tree = mgh = m*9.8*h
Of course the one on the tree has a value greater than zero.