Answer:
Part a)

Part b)
T = 4.68 s
Explanation:
Part a)
Shell is fired at speed of 40 m/s at angle of 35 degree
so here we have


since gravity act opposite to vertical speed of the shell so at the highest point of its trajectory the vertical component of the speed will become zero
so at the highest point the speed is given

Part b)
After completing the motion we know that the displacement of the object will be zero in Y direction
so we have




Answer:
option (B)
Explanation:
Intensity of unpolarised light, I = 25 W/m^2
When it passes from first polarisr, the intensity of light becomes

Let the intensity of light as it passes from second polariser is I''.
According to the law of Malus

Where, θ be the angle between the axis first polariser and the second polariser.

I'' = 11.66 W/m^2
I'' = 11.7 W/m^2
Answer:
a) KE = 888.26J
b) N = 294.5 turns
Explanation:
For the kinetic energy:

The inertia is:

So, the kinetic energy will be:

Now, friction force is:
Ff = μ*N = 0.80*5N = 4N
The energy balance would be:
Kf - Ko = Wf where Kf=0; Ko = 888.26J; and Wf is the work done by friction force.
Wf = -Ff*d = -Ff*N*2*π*R where N is the amount of turns it gives.
Replacing these values into the energy balance:
0-888.26=-4*N*2*π*0.12
-888.26=-0.96*π*N
N=294.5 turns
Answer
given,
mass of the goalie(m₁) = 70 kg
mass of the puck (m₂)= 0.11 kg
velocity of the puck = 31.5 m/s
elastic collision






