Answer:
Option (A) , (b) and (d) are correct option
Explanation:
According to Coulomb's law electric force between two charges is given by

From the relation we can say that force is directly proportional to magnitude of charges and inversely proportional to distance between them '
So if we increase the distance then force will decrease
Increase if any of the charge get larger
If force is attractive then both the charge will be of different sign and is force is repulsive then both the charges of same sign
From above conclusion we can say that (a), (b) and (d) are correct option
Hi there!
We can begin by finding the acceleration of the block.
Use the kinematic equation:

The block starts from rest, so:

Now, we can do a summation of forces of the block using Newton's Second Law:

mb = mass of the block
T = tension of string
Solve for tension:

Now, we can do a summation of torques for the wheel:

Rewrite:

We solved that the linear acceleration is 1.5 m/s², so we can solve for the angular acceleration using the following:

Now, plug in the values into the equation:

The initial is where you are starting and the final postion is where the object ends up
Answer:
the velocity of the water flow is 7.92 m/s
Explanation:
The computation of the velocity of the water flow is as follows
Here we use the Bernouli equation
As we know that

= 7.92 m/s
Hence, the velocity of the water flow is 7.92 m/s
We simply applied the above formula so that the correct value could come
And, the same is to be considered