Thermal energy transfers in a solid state, due to convection, in metalic substances.
This is because the covalent bonds between the atoms are being broken and reformed again while the metal is experiencing stress. <em>covalent bonds store energy. </em>
Answer:
The answer to your question is 80.3%
Explanation:
Data
Percent by mass of F
molecules NF₃
Process
1.- Calculate the molar mass of nitrogen trifluoride
molar mass = (1 x 14) + (19 x 3)
= 14 + 57
= 71 g
2.- Use proportions and cross multiplications to find the percent by mass of F. The molar mass of NF₃ is equal to 100%.
71 g of NF₃ ------------------ 100%
57 g of F ------------------- x
x = (57 x 100)/71
x = 5700 / 71
x = 80.3%
3.- Conclusion
Fluorine is 80.3% by mass of the molecule NF₃
Answer:
The correct answer is 160.37 KJ/mol.
Explanation:
To find the activation energy in the given case, there is a need to use the Arrhenius equation, which is,
k = Ae^-Ea/RT
k1 = Ae^-Ea/RT1 and k2 = Ae^-Ea/RT2
k2/k1 = e^-Ea/R (1/T2-1/T1)
ln(k2/k1) = Ea/R (1/T1-1/T2)
The values of rate constant k1 and k2 are 3.61 * 10^-15 s^-1 and 8.66 * 10^-7 s^-1.
The temperatures T1 and T2 are 298 K and 425 K respectively.
Now by filling the values we get:
ln (8.66*10^-7/3.61*10^-15) = Ea/R (1/298-1/425)
19.29 = Ea/R * 0.001
Ea = 160.37 KJ/mol
Answer:
What will determine the number of moles of hydronium in an aqueous solution of a strong monoprotic acid? The amount of acid that was added.
Explanation: