Answer:
No, distance is more important.
Answer:
a) variation of the energy is equal to the work of the friction force
b) W = Em_{f} -Em₀
, c) he conservation of mechanical energy
Explanation:
a) In an analysis of this problem we can use the energy law, where at the moment the mechanical energy is started it is totally potential, and at the lowest point it is totally kinetic, we can suppose two possibilities, that the friction is zero and therefore by equalizing the energy we set the velocity at the lowest point.
Another case is if the friction is different from zero and in this case the variation of the energy is equal to the work of the friction force, in value it will be lower than in the calculations.
b) the calluses that he would use are to hinder the worker's friction force and energy
W = Em_{f} -Em₀
N d = ½ m v² - m g (y₂-y₁)
y₂-y₁ = 35 -10 = 25m
c) if there is no friction, the physical principle is the conservation of mechanical energy
If there is friction, the principle is that the non-conservative work is equal to the variation of the energy
Newton's first law of motion.
<span>The core finally cools into a white dwarf, then a black dwarf. This is what happens when a normal-sized star dies. If a really huge star dies, it has so much mass that after the helium is used up, it still has enough carbon to fuse it into heavy elements like iron. When the core turns to iron, it no longer burns.
please give me </span>Brainliest answer?
Answer:
V = 152.542 volts
Explanation:
Given data:
area of plates
distance between the plates is 
charge = 
we know that capacitance is given as


potential difference is given as

V = 152.542 volts