For this case, the switch is located at point B of the diagram.
Remember that point D is the universal symbol for resistance.
In A what you have is a source of power and in C what you have is a cable.
Therefore, the answer for this case is B.
Answer:
4500 N
Explanation:
When a body is moving in a circular motion it will feel an acceleration directed towards the center of the circle, this acceleration is:
a = v^2/r
where v is the velocity of the body and r is the radius of the circumference:
Therefore, a body with mass m, will feel a force f:
f = m v^2/r
Therefore we need another force to keep the body(car) from sliding, this will be given by friction, remember that friction force is given a the normal times a constant of friction mu, that is:
fs = μN = μmg
The car will not slide if f = fs, i.e.
fs = μmg = m v^2/r
That is, the magnitude of the friction force must be (at least) equal to the force due to the centripetal acceleration
fs = (1000 kg) * (30m/s)^2 / (200 m) = 4500 N
It causes or makes a magnetic field.
Answer:
Explanation:
a ) Conservation of momentum is followed
m₁ v₁ = m₂ v₂
3m x 2 = m v
v = 6 m/s
Total kinetic energy
= 1/2 x .35 x 6 ² + 1/2 x 1.05 x 2 ²
= 8.4 J
This energy must be stored as elastic energy in the spring which was released as kinetic energy on burning the cord.
Yes , the conservation of momentum will be followed in the bursting apart process. Only internal forces have been involved in the process. Two equal and opposite internal forces are created by spring which creates motion and generates kinetic energy.
Expands. Water is a rare compound that expands when frozen.