To get x on its own, you times the 3 over to the other side so the 3 cancels out on the LHS.
~ x greater than or equal to -18
(C)
Answer:
hufiui
fihgpfghlfikgergkfkjhfkhjgkffhhh
Explanation:
jjgzgcjxhgygueyuufhfugkhkckgijljhgxjgjgffhgkgjxhxjgjcjckvjgghkhkgjgjfhfhfhffrusufsflslrsyfhldufñlñudtoqdyhjjxkgsgjfktwlyfñujxjxhlxlhdktstedoyñfuyñflldytidoyeyljjcñcjluffñui5woyepurñfuñufldyrajuñdlydstdyñudñydktshñxjcñydiw5uñfitwoyeoyeñufñfuñifjñufhlsyñeifññydoysitaiwtuñdyñdlsyltslsyoyeylsuñdñjjcyldlyslatlysñudidñjdñfjñjjxlhsmzhmzjjdjdlhdñhjdñjdñjddñhflhuñfhxltkds4urayraylraluarularuñstuñtsuñtsultsuñtsuñstñitsñktssistustlulsrustlularyralultalutslutajltsñgskjlgzljg?g o uguhxputxipyfugxiñhxiñhfuñdguldthgksjmgdjmgkhdjlgdjlgd
pduoyditsyafylrayoraourauptautospustistiptsñitsñitsñitsiptsiteitdustuñtsuñtsñitwiñstñitwñitsñstuuñrsoursurosoustjlsrlutejlgsjlstjfsjlgsultsjgzjñgsññkdylfhkñdgjlfshkadmjgsuñstñkydñkydñiykdhiñstñitsuñtsisñtñtieñietñietñiteñiwtñitskñgsiñteuñwrkñsturaluglsuñtwjlfalfjalhadoyfutdllgdñitswtkgsñktjrajtsurwñwñutiñtsiwñtuwñturqlñitwualtayoryarluarlietite
See the attached picture:
Hello!
A stretched spring has 5184 J of elastic potential energy and a spring constant of 16,200 N/m. What is the displacement of the spring ?
Data:



For a spring (or an elastic), the elastic potential energy is calculated by the following expression:

Where k represents the elastic constant of the spring (or elastic) and x the deformation or displacement suffered by the spring.
Solving:









Answer:
The displacement of the spring = 0.8 m
_______________________________
I Hope this helps, greetings ... Dexteright02! =)
To solve this problem we will use the definition of the period in a simple pendulum, which warns that it is dependent on its length and gravity as follows:

Here,
L = Length
g = Acceleration due to gravity
We can realize that
is a constant so it is proportional to the square root of its length over its gravity,

Since the body is in constant free fall, that is, a point where gravity tends to be zero:

The value of the period will tend to infinity. This indicates that the pendulum will no longer oscillate because both the pendulum and the point to which it is attached are in free fall.