Responda:
1) E = 6 × 10 ^ 6NC ^ -1 2) Q = 6 × 10 ^ -5
Explicação:
Dado o seguinte:
Carga (q) = 3uC = 3 × 10 ^ -6C
Força elétrica (Fe) = 18N
Intensidade do campo elétrico (E) =?
1)
Lembre-se:
Força elétrica (Fe) = carga (q) * Intensidade do campo elétrico (E)
Fe = qE; E = Fe / q
E = 18N / (3 × 10 ^ -6C)
E = 6N / 10 ^ -6C
E = 6 × 10 ^ 6NC ^ -1
2)
Lembre-se:
E = kQ / r ^ 2
E = intensidade do campo elétrico
Q = carga de origem
r = distância de espera = 30cm = 30/100 = 0,3m
K = 9,0 × 10 ^ 9
6 × 10 ^ 6 = (9,0 × 10 ^ 9 * Q) / 0,3 ^ 2
9,0 × 10 ^ 9 * Q = 6 × 10 ^ 6 * 0,09
Q = 0,54 × 10 ^ 6 / 9,0 × 10 ^ 9
Q = 0,06 × 10 ^ (6-9)
Q = 0,06 × 10 ^ -3
Q = 6 × 10 ^ -5 = 60 × 10 ^ -6 = 60μC
Hello! Assuming that the only force acting on the mass is 30N...
Fnet = 30N
Fnet = ma (mass x acceleration)
ma = 30N
a = 30N / m
a = 30N / 7kg
a = 4.2857 m/s^2
a = 4 m/s^2
I hope this helps!
Answer:

Explanation:
Given:
- mass of vehicle,

- radius of curvature,

- coefficient of friction,

<u>During the turn to prevent the skidding of the vehicle its centripetal force must be equal to the opposite balancing frictional force:</u>

where:
coefficient of friction
normal reaction force due to weight of the car
velocity of the car

is the maximum velocity at which the vehicle can turn without skidding.
(2^(1-γ)-1)/(1-γ) where γ is the heat capacity ratio, Cp/Cv. See attached image for the working.
http://prntscr.com/htqqte
In a fluid, all the forces exerted by the individual particles combine to make up the pressure exerted by the fluid
Due to fundamental nature of fluids, a fluid cannot remain at rest under the presence of shear stress. However, fluids can exert pressure normal to any contacting surface. If a point in the fluid is thought of as a small cube, then it follows from the principles of equilibrium that the pressure on every side of this unit of fluid must be equal. but if this were not a case, the fluid would move in the directions of the resulting force, So the pressure on a fluid at rest is isotropic.
Hope This Helps :D <span />