Answer:
A) G = m³/kg.s²
B) E = kg.m²/s²
Explanation:
A)
The given relation is:
F = Gm₁m₂/r²
where, the units of all variables are:
F = Force = kg.m/s²
m₁ = m₂ = mass = kg
r = distance = m
G = Gravitational Constant = ?
Therefore,
kg.m/s² = G(kg)(kg)/m²
(kg.m/s²)(m²/kg²) = G
<u>G = m³/kg.s²</u>
<u></u>
B)
The given equation is:
E = mc²
where, the units of all variables are:
m = mass = kg
c = speed = m/s
E = Energy = ?
Therefore,
E = (kg)(m/s)²
<u>E = kg.m²/s²</u>
This is the correct answer, which is not present in any option.
Answer:
Control of air–fuel ratio
Oxygen sensors tell the ECU whether the engine is running rich (too much fuel or too little oxygen) or running lean (too much oxygen or too little fuel) as compared to ideal conditions (known as stoichiometric).
Explanation:
Answer:
Explanation:
initial angular velocity, ωo = 0 rad/s
angular acceleration, α = 30.5 rad/s²
time, t = 9 s
radius, r = 0.120 m
let the velocity is v after time 9 s.
Use first equation of motion for rotational motion
ω = ωo + αt
ω = 0 + 30.5 x 9
ω = 274.5 rad/s
v = rω
v = 0.120 x 274.5
v = 32.94 m/s
There may be an esoteric technical shade or nuance of difference. But I've been an electrical engineer for 40 years now, and have always used them interchangeably.
(I would have answered your question by saying "No.", but this website won't accept an answer that's less than 200 characters long.)