Answer:
-9 x 1 x 1 x 1 x 2 = (-18)
-9 + 1 + 1 + 1 + 2 = (-4)
You're correct, the answer is C.
Given any function of the form

, then the derivative of y with respect to x (

) is written as:

In which

is any constant, this is called the power rule for differentiation.
For this example we have

, first lets get rid of the quotient and write the expression in the form

:

Now we can directly apply the rule stated at the beginning (in which

):

Note that whenever we differentiate a function, we simply "ignore" the constants (we take them out of the derivative).

- Given - <u>A </u><u>trapezium</u><u> </u><u>ABCD </u><u>with </u><u>non </u><u>parallel </u><u>sides </u><u>of </u><u>measure </u><u>1</u><u>5</u><u> </u><u>cm </u><u>each </u><u>!</u><u> </u><u>along </u><u>,</u><u> </u><u>the </u><u>parallel </u><u>sides </u><u>are </u><u>of </u><u>measure </u><u>1</u><u>3</u><u> </u><u>cm </u><u>and </u><u>2</u><u>5</u><u> </u><u>cm</u>
- To find - <u>Area </u><u>of </u><u>trapezium</u>
Refer the figure attached ~
In the given figure ,
AB = 25 cm
BC = AD = 15 cm
CD = 13 cm
<u>Construction</u><u> </u><u>-</u>

Now , we can clearly see that AECD is a parallelogram !
AE = CD = 13 cm
Now ,

Now , In ∆ BCE ,

Now , by Heron's formula

Also ,

<u>Since </u><u>we've </u><u>obtained </u><u>the </u><u>height </u><u>now </u><u>,</u><u> </u><u>we </u><u>can </u><u>easily </u><u>find </u><u>out </u><u>the </u><u>area </u><u>of </u><u>trapezium </u><u>!</u>

hope helpful :D
Answer:
y = -(3/7)x + 2
Step-by-step explanation:
(see attached)
recall that the slope-intercept form of a linear equation is
y = mx + b
where m = slope = given as -(3/7)
and b = y-intercept = 2
substituting these values into the eqation:
y = mx + b
y = -(3/7)x + 2