Answer:
Q=127.66W
L=9.2mm
Explanation:
Heat transfer consists of the propagation of energy in the form of heat in different ways, these can be convection if it is through a fluid, radiation through electromagnetic waves and conduction through solid solids.
To solve any problem related to heat transfer, the general equation is used
Q = delta / R
Where
Q = heat
Delta = the temperature difference
R = is the thermal resistance by conduction, convection and radiation
to solve this problem we propose the previous equation
Q = delta / R
later we find R
![R=[tex]r=\frac{6L1}{AK1} +\frac{5L2}{AK2}+\frac{1}{Ah}](https://tex.z-dn.net/?f=R%3D%5Btex%5Dr%3D%5Cfrac%7B6L1%7D%7BAK1%7D%20%2B%5Cfrac%7B5L2%7D%7BAK2%7D%2B%5Cfrac%7B1%7D%7BAh%7D)

Q=(25-(-5))/0.235=127.66W
part b
we use the same ecuation with Q=127.66
Q = delta / R
Δ
Answer:
778.4°C
Explanation:
I = 700
R = 6x10⁻⁴
we first calculate the rate of heat that is being transferred by the current
q = I²R
q = 700²(6x10⁻⁴)
= 490000x0.0006
= 294 W/M
we calculate the surface temperature
Ts = T∞ + 
Ts = 


The surface temperature is therefore 778.4°C if the cable is bare
Answer:
Yes it is possible
Explanation:
<u>Procedures to be taken:</u>
<u>Step 1:</u>
I will deform the specimen, that is, I will subject the specimen to plastic deformation at room temperature.
<u>Step 2:</u>
Also, I will anneal the deformed specimen at a high temperature.
<u>Step 3:</u>
Then, recrystallize the annealed specimen
<u>Step 4:</u>
Finally, I will facilitate the grain growth until the average grain diameter becomes 0.02mm.