1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AleksAgata [21]
3 years ago
11

An undeformed specimen of some alloy has an average grain diameter of 0.050 mm. You are asked to reduce its average grain diamet

er to 0.020 mm. Is this possible? If so, explain the procedures you wo
Engineering
1 answer:
aleksandrvk [35]3 years ago
5 0

Answer:

Yes it is possible

Explanation:

<u>Procedures to be taken:</u>

<u>Step 1:</u>

I will deform the specimen, that is, I will subject the specimen to plastic deformation at room temperature.

<u>Step 2:</u>

Also, I will anneal the deformed specimen at a high temperature.

<u>Step 3:</u>

Then, recrystallize the annealed specimen

<u>Step 4:</u>

Finally, I will facilitate the grain growth until the average grain diameter becomes 0.02mm.

You might be interested in
A 900 kg car is accelerated from a speed of 10 m/s to 30 m/s. An estimated heat loss of 20 BTU's occurs during the acceleration.
Strike441 [17]

Answer:

Work = 651,1011 kJ

Explanation:

Let´s take the car as a system in order to apply the first law of thermodynamics as follows:

E_{in}- E_{out}=E_{system,final}- E_{system,initial}

Where

E_{in}- E_{out}=(Q_{in}-Q_{out})_{heat}+(W_{in}-W_{out})_{work}+(Em_{in}-Em_{out})_{mass}

And considering that there is no mass transfer and that the only energy flows that interact with the system are the heat losses and the work needed to move the car we have:

E_{in}- E_{out}=-Q_{out}+W_{in}

Regarding the energy system we have the following:

E_{system,final}- E_{system,initial}=(U_{f}-U_{i})_{internal}+(1/2m(V^2_{f}-V^2_{i}))_{kinetic}+(mg(h_{f}-h_{i}))_{potential}

By doing the calculations we have:

E_{system,final}- E_{system,initial}=[0,1*900]_{internal}+[0,5*900(30^2-10^2)/1000)_{kinetic}+(900*10*(20-0)/1000)_{potential}\\E_{system,final}- E_{system,initial}=90+360+180=630kJ

Consider that in the previous calculation, the kinetic and potential energy terms were divided by 1.000 to change the units from J to kJ.

Finally, the work needed to move the car under the required conditions is calculated as follows:

W_{in}=Q_{out}+E_{system,final}- E_{system,initial}\\W_{in}=21,1011+630=651,1011kJ

Consider that in the previous calculation, the heat loss was changed previously from BTU to kJ.

4 0
3 years ago
A window‐mounted air‐conditioning unit (AC) removes energy by heat transfer from a room, and rejects energy by heat transfer to
Arada [10]

Solution :

Given :

The power of the air‐conditioning (AC) unit is , W = 0.434 kW

The coefficient of performance or the COP of the air‐conditioning (AC) unit is given by  = 6.22

Therefore he heat removed is given by , $Q_H = 6.22 \times 0.434$

                                                                     $Q_H = 2.7 \ kW $

Now if the electricity is valued at  0.10 dollar per kW hour, then the operating cost of the air conditioning unit in 24 hours is given by = 0.10 x 2.7 x 24

                                                                                            = 6.48

Therefore the operating cost = $ 6.48 for 24 hours.

3 0
3 years ago
Find the time-domain sinusoid for the following phasors:_________
sattari [20]

<u>Answer</u>:

a.  r(t) = 6.40 cos (ωt + 38.66°) units

b.  r(t) = 6.40 cos (ωt - 38.66°) units

c.  r(t) = 6.40 cos (ωt - 38.66°) units

d.  r(t) = 6.40 cos (ωt + 38.66°) units

<u>Explanation</u>:

To find the time-domain sinusoid for a phasor, given as a + bj, we follow the following steps:

(i) Convert the phasor to polar form. The polar form is written as;

r∠Ф

Where;

r = magnitude of the phasor = \sqrt{a^2 + b^2}

Ф = direction = tan⁻¹ (\frac{b}{a})

(ii) Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid (r(t)) as follows:

r(t) = r cos (ωt + Φ)

Where;

ω = angular frequency of the sinusoid

Φ = phase angle of the sinusoid

(a) 5 + j4

<em>(i) convert to polar form</em>

r = \sqrt{5^2 + 4^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{4}{5})

Φ = tan⁻¹ (0.8)

Φ = 38.66°

5 + j4 = 6.40∠38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt + 38.66°)

(b) 5 - j4

<em>(i) convert to polar form</em>

r = \sqrt{5^2 + (-4)^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{-4}{5})

Φ = tan⁻¹ (-0.8)

Φ = -38.66°

5 - j4 = 6.40∠-38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt - 38.66°)

(c) -5 + j4

<em>(i) convert to polar form</em>

r = \sqrt{(-5)^2 + 4^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{4}{-5})

Φ = tan⁻¹ (-0.8)

Φ = -38.66°

-5 + j4 = 6.40∠-38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt - 38.66°)

(d) -5 - j4

<em>(i) convert to polar form</em>

r = \sqrt{(-5)^2 + (-4)^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{-4}{-5})

Φ = tan⁻¹ (0.8)

Φ = 38.66°

-5 - j4 = 6.40∠38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt + 38.66°)

3 0
3 years ago
Carbon dating for archeological materials is based on the fact that a plant, after its death, stops absorbing radioactive C-14 a
Olin [163]

Answer:

 t = 2212 years

Explanation:

In radioactive decay processes it is described by the equation

         N = N₀ e^{-\lambda t}

to calculate the activity

        T_{1/2} = log 2 /λ

        λ = log 2 / T_{1/2}

     

        λ = log 2 /5715

        λ = 5.267 10⁻⁵

now the amount of carbon 14 is N₀ = 0.1%, the sample contains an amount of N = 0.089%

          N / N₀ = e^{-\lambda t}

          -λ t = ln N / N₀

           t = - 1 /λ  ln N /N₀

           t = 1 / 5.267 10⁻⁵   ln (0.089 / 0.1)

           t = 2,212 10³ years

           t = 2212 years

8 0
3 years ago
Resistance produces____<br> in a conductor.<br> •Gas<br> •Energy<br> •Heat
Zepler [3.9K]

Answer:

The answer would be Heat

3 0
3 years ago
Read 2 more answers
Other questions:
  • Explain how you could transmit two independent base-band information signals by using SSB on a common carrier frequency.
    13·1 answer
  • Select the statement that is false.
    12·1 answer
  • Both portions of the rod ABC are made of an aluminum for whichE = 70 GPa. Knowing that the magnitude of P is 4 kN, determine(a)
    6·1 answer
  • Marco wants to investigate the chemical properties of sodium bicarbonate, or baking soda. He plans to carry out the tests below.
    8·2 answers
  • 1 gallon of benzene having a density of 0.88 g/mL is spilled in 200 feet by 150 foot lake having an average depth of 6 feet. Wha
    15·1 answer
  • A 10-m-long countercurrent-flow heat exchanger is being used to heat a liquid food from 20 to 808C. The heating medium is oil, w
    8·1 answer
  • g A 12,000 m3/day treatment plant has a rectangular sedimentation basin with dimensions 12 meters wide, 3 meters deep, and 25 me
    8·1 answer
  • Use pseudocode. 1) Prompt for and input a saleswoman's sales for the month (in dollars) and her commission rate (percentage). Ou
    6·1 answer
  • How many squares titles (20cm x 20cm) are needed to coat the sides and base of a pool which is 10m long, 6 meter wide and 3m dee
    8·1 answer
  • A 1.5-kg specimen of a 90 wt% Pb-10 wt% Sn alloy (Animated Figure 9.8) is heated to 250°C; at this temperature it is entirely an
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!