1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
natulia [17]
3 years ago
15

An air-conditioner with refrigerant-134a as the working fluid is used to keep a room at 23°C by rejecting the waste heat to the

outdoor air at 37°C. The room gains heat through the walls and the windows at a rate of 250 kJ/min while the heat generated by the computer, TV, and lights amounts to 900 W. The refrigerant enters the compressor at 400 kPa as a saturated vapor at a rate of 100 L/min and leaves at 1200 kPa and 70°C. Determine (a) the actual COP, (b) the maximum COP, and (c) the minimum volume flow rate of the refrigerant at the compressor inlet for the same compressor inlet and exit conditions.

Engineering
1 answer:
Kryger [21]3 years ago
7 0

Answer:

(a) 3.455

(b) 21.143

(c) 16.36L/min

Explanation:

In this question, we’d be providing solution to the working process of a refrigerator given the data in the question.

Please check attachment for complete solution and step by step explanation

You might be interested in
What are factor of safety for brittle and ductile material
galben [10]

Explanation:

Step1

Factor of safety is the number that is taken for the safe design of any component. It is the ratio of failure stress to the maximum allowable stress for the material.

Step2

It is an important parameter for design of any component. This factor of safety is taken according to the environment condition, type of material, strength, type of component etc.

Step3

Different material has different failure stress. So, ductile material fails under shear force. Ductile material’s FOS is based on yield stress as failure stress as after yield point ductile material tends to yield. Brittle material’s FOS is based on ultimate stress as failure stress.

The expression for factor of safety for ductile material is given as follows:

FOS=\frac{\sigma_{yp}}{\sigma_{a}}

Here,\sigma_{f} is yield stress and \sigma_{a} is allowable stress.

The expression for factor of safety for brittle material is given as follows:

FOS=\frac{\sigma_{ut}}{\sigma_{a}}

Here,\sigma_{ut} is ultimate stress and \sigma_{a} is allowable stress.

5 0
3 years ago
A bar having a length of 5 in. and cross-sectional area of 0. 7 in.2 is subjected to an axial force of 8000 lb. If the bar stret
andrew11 [14]

The modulus of elasticity is 28.6 X 10³ ksi

<u>Explanation:</u>

Given -

Length, l = 5in

Force, P = 8000lb

Area, A = 0.7in²

δ = 0.002in

Modulus of elasticity, E = ?

We know,

Modulus of elasticity, E = σ / ε

Where,

σ is normal stress

ε is normal strain

Normal stress can be calculated as:

σ = P/A

Where,

P is the force applied

A is the area of cross-section

By plugging in the values, we get

σ = \frac{8000 X 10^-^3}{0.7}

σ = 11.43ksi

To calculate the normal strain we use the formula,

ε = δ / L

By plugging in the values we get,

ε = \frac{0.002}{5}

ε = 0.0004 in/in

Therefore, modulus of elasticity would be:

E = \frac{11.43}{0.004} \\\\E = 28.6 X 10^3 ksi

Thus, modulus of elasticity is 28.6 X 10³ ksi

6 0
3 years ago
A beam has been fixed to the floor by the pin at B and the roller at A as shown in figure 1 below.​
ahrayia [7]
What figure below???
3 0
3 years ago
Mohr's circle represents: A Orientation dependence of normal and shear stresses at a point in mechanical members B The stress di
blsea [12.9K]

Answer:

The correct answer is A : Orientation dependence of normal and shear stresses at a point in mechanical members

Explanation:

Since we know that in a general element of any loaded object the normal and shearing stresses vary in the whole body which can be mathematically represented as

\sigma _{x'x'}=\frac{\sigma _{xx}+\sigma _{yy}}{2}+\frac{\sigma _{xx}-\sigma _{yy}}{2}cos(2\theta )+\tau _{xy}sin(2\theta )

And \tau _{x'x'}=-\frac{\sigma _{xx}-\sigma _{yy}}{2}sin(2\theta )+\tau _{xy}cos(2\theta )

Mohr's circle is the graphical representation of the variation represented by the above 2 formulae in the general oriented element of a body that is under stresses.

The Mohr circle is graphically displayed in the attached figure.

4 0
3 years ago
Multiple Choice
ra1l [238]
I need more details to your question
4 0
2 years ago
Read 2 more answers
Other questions:
  • As an employee, who's is supposed to provide training on the chemicals you are handling or come in contact with at work?
    14·2 answers
  • The components of an electronic system dissipating 180 W are located in a 1-m-long horizontal duct whose cross section is 16 cm
    10·1 answer
  • How much heat (Btu) is prod uced by a 150-W light bulb that is on for 20-hours?
    14·1 answer
  • Liquid water is fed to a boiler at 24°C and 10 bar is converted at a constant pressure to saturated steam.
    12·1 answer
  • A certain metal has a resistivity of 1.68 × 10-8 Ω ∙ m. You have a long spool of wire made from this metal. If this wire has a d
    14·1 answer
  • List two possible reasons the engine oil could have a strong gasoline smell
    15·1 answer
  • Which one of these is not a successful budgeting strategy
    5·2 answers
  • Characteristics of 3 types of soil​
    10·1 answer
  • There are three different types of slings. What determines which type you use?
    13·1 answer
  • An open tank contain oil of specific gravity 0.75 on top of
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!