Ah ha ! Very interesting question.
Thought-provoking, even.
You have something that weighs 1 Newton, and you want to know
the situation in which the object would have the greatest mass.
Weight = (mass) x (local gravity)
Mass = (weight) / (local gravity)
Mass = (1 Newton) / (local gravity)
"Local gravity" is the denominator of the fraction, so the fraction
has its greatest value when 'local gravity' is smallest. This is the
clue that gives it away.
If somebody offers you 1 chunk of gold that weighs 1 Newton,
you say to him:
"Fine ! Great ! Golly gee, that's sure generous of you.
But before you start weighing the chunk to give me, I want you
to take your gold and your scale to Pluto, and weigh my chunk
there. And if you don't mind, be quick about it."
The local acceleration of gravity on Pluto is 0.62 m/s² ,
but on Earth, it's 9.81 m/s.
So if he weighs 1 Newton of gold for you on Pluto, its mass will be
1.613 kilograms, and it'll weigh 15.82 Newtons here on Earth.
That's almost 3.6 pounds of gold, worth over $57,000 !
It would be even better if you could convince him to weigh it on
Halley's Comet, or on any asteroid. Wherever he's willing to go
that has the smallest gravity. That's the place where the largest
mass weighs 1 Newton.
Answer:
B. 4 m/s
Explanation:
v=d/t
Running for 300 m at 3 m/s takes 100 seconds and running at 300 m at 6 m/s takes 50 seconds. 100 s + 50 s = 150 s (total time). Total distance is 600 m, so 600 m/ 150 s = 4 m/s.
Answer: A- It would increase
Explanation:
According to the law of universal gravitation:
Where:
is the module of the attraction force exerted between both objects
is the universal gravitation constant.
and
are the masses of both objects
is the distance between both objects
As we can see, the gravity force is directly proportional to the mass of the bodies or objects and inversely proportional to the square of the distance that separates them.
In other words:
<h2>If we decrease the distance between both objects, the gravitational force between them will increase. </h2>
Answer:
4.384 * 10^13
Explanation:
Given the expression :
[(6.67 * 10^-11) * (1.99 * 10^30)] ÷ [(1.74*10^3)*(1.74*10^3)]
Applying the laws of indices
[(6.67 * 1.99) *10^(-11 + 30)] ÷ [(1.74 * 1.74) * 10^3+3]
13.2733 * 10^19 ÷ 3.0276 * 10^6
(13.2733 / 3.0276) * 10^(19 - 6)
4.3840996 * 10^13
= 4.384 * 10^13
Answer:
No, the car is decelerating
Explanation:
No the car is decelerating if it exits a freeway and goes from 65
mph to 35 mph since the change in velocity is negative.
change in velocity = final - initial
change in velocity = 35 - 65
change in velocity = -30mph
Since the change in velocity is negative, hence the car is decelerating. Deceleration is a negative acceleration