Answer:
An earthquake is a sudden shaking movement of the surface of the earth. It is known as a quake, tremblor or tremor. Earthquakes can range in size from those that are so weak that they cannot be felt to those violent enough to toss people around and destroy whole cities. ... An earthquake is measured on Richter's scale.
<h2><u>
PLEASE MARK ME BRAINLIEST, PLEASE</u></h2>
Answer:
8 seconds
Explanation:
From Newton's second law;
Ft = m(v-u)
F = Force applied
t = time taken
v = final velocity
u = initial velocity
20 * t = 32 (9 - 4)
20t = 32 * 5
t = 32 * 5/ 20
t = 8 seconds
Answer:
a) > x<-c(1,2,3,4,5)
> y<-c(1.9,3.5,3.7,5.1,6)
> linearmodel<-lm(y~x)
And the output is given by:
> linearmodel
Call:
lm(formula = y ~ x)
Coefficients:
(Intercept) x
1.10 0.98
b) 
And if we compare this with the general model 
We see that the slope is m= 0.98 and the intercept b = 1.10
Explanation:
Part a
For this case we have the following data:
x: 1,2,3,4,5
y: 1.9,3.5,3.7,5.1, 6
For this case we can use the following R code:
> x<-c(1,2,3,4,5)
> y<-c(1.9,3.5,3.7,5.1,6)
> linearmodel<-lm(y~x)
And the output is given by:
> linearmodel
Call:
lm(formula = y ~ x)
Coefficients:
(Intercept) x
1.10 0.98
Part b
For this case we have the following trend equation given:

And if we compare this with the general model 
We see that the slope is m= 0.98 and the intercept b = 1.10
Answer:
emf will also be 10 times less as compared to when it has fallen 
Explanation:
We know, from faraday's law-

and 
So, as the height increases the velocity with which it will cross the ring will also increase. 
Given


Now, from 

From equation a and b we see that velocity when dropped from
is 10 times greater when height is 40
so, emf will also be 10 times less as compared to when it has fallen 
I believe the answer would be c because i think that you multiply the 2