Fair enough, but you'll have to tell us the volume of the bar first.
Answer:
3 km/h
Explanation:
Let's call the rowing speed in still water x, in km/h.
Rowing speed in upstream is: x - 2 km/h
Rowing speed in downstream is: x + 2 km/h
It took a crew 9 h 36 min ( = 9 3/5 = 48/5) to row 8 km upstream and back again. Therefore:
8/(x - 2) + 8/(x + 2) = 48/5 (notice that: time = distance/speed)
Multiplying by x² - 2², which is equivalent to (x-2)*(x+2)
8*(x+2) + 8*(x-2) = (48/5)*(x² - 4)
Dividing by 8
(x+2) + (x-2) = (6/5)*(x² - 4)
2*x = (6/5)*x² - 24/5
0 = (6/5)*x² - 2*x - 24/5
Using quadratic formula






A negative result has no sense, therefore the rowing speed in still water was 3 km/h
Answer:
Directly proportional: as one amount increases another amount increases at the ... The "constant of proportionality" is the value that relates the two amounts ... Example: y is directly proportional to x, and when x=3 then y=15. ... Speed and travel time are Inversely Proportional because the faster we go the shorter the time.
Solve for "x"
X=force
18/6=x/9
cross multiply
162=6x
x=27
Hope this helps
La longitud <em>final</em> del puente de acero es 100.018 metros.
Asumamos que la dilatación <em>térmica</em> experimentada por el puente de acero es <em>pequeña</em>, de modo que podemos emplear la siguiente aproximación <em>lineal</em> para determinar la longitud <em>final</em> del puente de acero (
), en metros:
(1)
Donde:
- Longitud inicial del puente, en metros.
- Coeficiente de dilatación, sin unidad.
- Temperatura inicial, en grados Celsius.
- Temperatura final, en grados Celsius.
Si tenemos que
,
,
y
, entonces la longitud final del puente de acero es:
![L = (100\,m)\cdot [1+(11.5\times 10^{-6})\cdot (24\,^{\circ}C - 8\,^{\circ}C)]](https://tex.z-dn.net/?f=L%20%3D%20%28100%5C%2Cm%29%5Ccdot%20%5B1%2B%2811.5%5Ctimes%2010%5E%7B-6%7D%29%5Ccdot%20%2824%5C%2C%5E%7B%5Ccirc%7DC%20-%208%5C%2C%5E%7B%5Ccirc%7DC%29%5D)

La longitud <em>final</em> del puente de acero es 100.018 metros.
Para aprender más sobre dilatación térmica, invitamos cordialmente a ver esta pregunta verificada: brainly.com/question/24953416