1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Usimov [2.4K]
3 years ago
15

What is atmospheric pressure and what are the diffetent units?

Physics
1 answer:
Burka [1]3 years ago
6 0
Atsmopheric pressure is the pressure that is on something inside and atmosphere. measured in either mmhg or milimeters of Mercury, or atmospheres abreviated atm.
You might be interested in
What is the distance from axis about which a uniform, balsa-wood sphere will have the same moment of inertia as does a thin-wall
andrey2020 [161]

Answer:

D_{s} ≈ 2.1 R

Explanation:

The moment of inertia of the bodies can be calculated by the equation

     I = ∫ r² dm

For bodies with symmetry this tabulated, the moment of inertia of the center of mass

Sphere               Is_{cm} = 2/5 M R²

Spherical shell   Ic_{cm} = 2/3 M R²

The parallel axes theorem allows us to calculate the moment of inertia with respect to different axes, without knowing the moment of inertia of the center of mass

    I = I_{cm} + M D²

Where M is the mass of the body and D is the distance from the center of mass to the axis of rotation

Let's start with the spherical shell, axis is along a diameter

     D = 2R

    Ic = Ic_{cm} + M D²

    Ic = 2/3 MR² + M (2R)²

    Ic = M R² (2/3 + 4)

    Ic = 14/3 M R²

The sphere

    Is =Is_{cm} + M [D_{s}²

    Is = Ic

    2/5 MR² + M D_{s}² = 14/3 MR²

    D_{s}² = R² (14/3 - 2/5)

    D_{s} = √ (R² (64/15)

    D_{s} = 2,066 R

3 0
4 years ago
If an object has a kinetic energy of 30 j and mass of 34kg how fast is the object moving ?
Murrr4er [49]

Ek = (m*V^2) / 2 where m is mass and V is speed, then we can take this equation and manipulate it a little to isolate the speed.

Ek = mv^2 / 2 — multiply both sides by 2

2Ek = mv^2 — divide both sides by m

2Ek / m = V^2 — switch sides

V^2 = 2Ek / m — plug in values

V^2 = 2*30J / 34kg

V^2 = 60J/34kg

V^2 = 1.76 m/s — sqrt of both sides

V = sqrt(1.76)

V = 1.32m/s (roughly)

5 0
3 years ago
Ch 31 HW Exercise 31.10 7 of 15 Constants You want the current amplitude through a inductor with an inductance of 4.90 mH (part
sergey [27]

Answer:

f = 130 Khz

Explanation:

In a circuit driven by a sinusoidal voltage source, there exists a fixed relationship between the amplitudes of the current and the voltage through any circuit element, at any time.

For an inductor, this relationship can be expressed as follows:

VL = IL * XL (1) , which is a generalized form of Ohm's Law.

XL is called the inductive reactance, and is defined as follows:

XL = ω*L = 2*π*f*L, where f is the frequency of the sinusoidal source (in Hz) and  L is the value of the inductance, in H.

Replacing in (1), by the values given of VL, IL, and L, we can solve for f, as follows:

f = VL / 2*π*IL*L = 12 V / 2*π*(3.00*10⁻³) A* (4.9*10⁻³) H = 130 Khz

5 0
3 years ago
When a 440-Hz tuning fork and a piano key are struck together, five beats are heard. If the pitch of the note on the piano is lo
vovangra [49]
The frequency would also be lower
7 0
4 years ago
Read 2 more answers
An ideal Diesel cycle has a compression ratio of 18 and a cutoff ratio of 1.5. Determine the (1) maximum air temperature and (2)
weqwewe [10]

Answer:

(1) The maximum air temperature is 1383.002 K

(2) The rate of heat addition is 215.5 kW

Explanation:

T₁ = 17 + 273.15 = 290.15

\frac{T_2}{T_1} =r_v^{k - 1} =18^{0.4} =3.17767

T₂ = 290.15 × 3.17767 = 922.00139

\frac{T_3}{T_2} =\frac{v_3}{v_2} = r_c = 1.5

Therefore,

T₃ = T₂×1.5 = 922.00139 × 1.5 = 1383.002 K

The maximum air temperature = T₃ = 1383.002 K

(2)

\frac{v_4}{v_3} =\frac{v_4}{v_2} \times \frac{v_2}{v_3}  = \frac{v_1}{v_2} \times \frac{v_2}{v_3} = 18 \times \frac{1}{1.5} = 12

\frac{T_3}{T_4} =(\frac{v_4}{v_3} )^{k-1} = 12^{0.4} = 2.702

Therefore;

T_4 = \frac{1383.002}{2.702} =511.859 \ k

Q_1 = c_p(T_3-T_2)

Q₁ = 1.005(1383.002 - 922.00139) = 463.306 kJ/jg

Heat rejected per kilogram is given by the following relation;

c_v(T_4-T_1)  = 0.718×(511.859 - 290.15) = 159.187 kJ/kg

The efficiency is given by the following relation;

\eta = 1-\frac{\beta ^{k}-1}{\left (\beta -1  \right )r_{v}^{k-1}}

Where:

β = Cut off ratio

Plugging in the values, we get;

\eta = 1-\frac{1.5 ^{1.4}-1}{\left (1.5 -1  \right )18^{1.4-1}}= 0.5191

Therefore;

\eta = \frac{\sum Q}{Q_1}

\therefore 0.5191 = \frac{150}{Q_1}

Heat supplied = \frac{150}{0.5191}  = 288.978 \ hp

Therefore, heat supplied = 215491.064 W

Heat supplied ≈ 215.5 kW

The rate of heat addition = 215.5 kW.

7 0
4 years ago
Other questions:
  • What can be said about the radioactive decay of a single (not a large quantity) isotope?
    8·2 answers
  • Which set of conditions would produce the least favorable soil for growing crops?
    10·1 answer
  • What does a forensic anthropologist do?
    15·1 answer
  • An optical fiber uses one glass clad with another glass. What is the critical angle? (Assume the glass in the fiber has an index
    5·1 answer
  • A 12 oz can of soda was left in a car on a hot day. in the morning, the soda temperature was 60°f with a gauge pressure of 40 ps
    14·1 answer
  • C-14 is an isotope of the element carbon. How does it differ from the carbon atom seen here? A) C-14 has two more protons. B) C-
    12·2 answers
  • A layer of oil (n = 1.38) floats on an unknown liquid. A ray of light originates in the oil and passes into the unknown liquid.
    15·1 answer
  • The amount of diffraction that a sound wave undergoes depends on
    9·1 answer
  • HELP!! Two guitarists are tuning their instruments with each other. They both play a specific note at the same time. One guitari
    10·1 answer
  • 2. A linearly-polarized em wave moving in vacuum perpendicular to a perfectly reflecting surface exerts a radiation pressure of
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!