Answer: C. Infinite
Explanation: (To explain this answer, I'll use 1 = 1) When you get 1 = 1 after doing an equation, this mean the answer is "all real numbers", which is the same term as "infinite" because it will always be true. Therefore, 0 = 0 will always be a true statement.
Answer:
-4 +4 =0
Step-by-step explanation:
The sum of a number and its' additive inverse is 0
The additive inverse of -4 is 4
-4 +4 =0
I believe that the answer is b...the second one down.
im not completely sure. i have not don
Answer:
Max Value: x = 400
General Formulas and Concepts:
<u>Algebra I</u>
- Domain is the set of x-values that can be inputted into function f(x)
<u>Calculus</u>
- Antiderivatives
- Integral Property:
![\int {cf(x)} \, dx = c\int {f(x)} \, dx](https://tex.z-dn.net/?f=%5Cint%20%7Bcf%28x%29%7D%20%5C%2C%20dx%20%3D%20c%5Cint%20%7Bf%28x%29%7D%20%5C%2C%20dx)
- Integration Method: U-Substitution
- [Integration] Reverse Power Rule:
![\int {x^n} \, dx = \frac{x^{n+1}}{n+1} + C](https://tex.z-dn.net/?f=%5Cint%20%7Bx%5En%7D%20%5C%2C%20dx%20%3D%20%5Cfrac%7Bx%5E%7Bn%2B1%7D%7D%7Bn%2B1%7D%20%2B%20C)
Step-by-step explanation:
<u>Step 1: Define</u>
![f(x) = \frac{1}{\sqrt{800-2x} }](https://tex.z-dn.net/?f=f%28x%29%20%3D%20%5Cfrac%7B1%7D%7B%5Csqrt%7B800-2x%7D%20%7D)
<u>Step 2: Identify Variables</u>
<em>Using U-Substitution, we set variables in order to integrate.</em>
![u = 800-2x\\du = -2dx](https://tex.z-dn.net/?f=u%20%3D%20800-2x%5C%5Cdu%20%3D%20-2dx)
<u>Step 3: Integrate</u>
- Define:
![\int {f(x)} \, dx](https://tex.z-dn.net/?f=%5Cint%20%7Bf%28x%29%7D%20%5C%2C%20dx)
- Substitute:
![\int {\frac{1}{\sqrt{800-2x} } } \, dx](https://tex.z-dn.net/?f=%5Cint%20%7B%5Cfrac%7B1%7D%7B%5Csqrt%7B800-2x%7D%20%7D%20%7D%20%5C%2C%20dx)
- [Integral] Int Property:
![-\frac{1}{2} \int {\frac{-2}{\sqrt{800-2x} } } \, dx](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B2%7D%20%5Cint%20%7B%5Cfrac%7B-2%7D%7B%5Csqrt%7B800-2x%7D%20%7D%20%7D%20%5C%2C%20dx)
- [Integral] U-Sub:
![-\frac{1}{2} \int {\frac{1}{\sqrt{u} } } \, du](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B2%7D%20%5Cint%20%7B%5Cfrac%7B1%7D%7B%5Csqrt%7Bu%7D%20%7D%20%7D%20%5C%2C%20du)
- [Integral] Rewrite:
![-\frac{1}{2} \int {u^{-\frac{1}{2} }} \, du](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B2%7D%20%5Cint%20%7Bu%5E%7B-%5Cfrac%7B1%7D%7B2%7D%20%7D%7D%20%5C%2C%20du)
- [Integral - Evaluate] Reverse Power Rule:
![-\frac{1}{2}(2\sqrt{u}) + C](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B2%7D%282%5Csqrt%7Bu%7D%29%20%2B%20C)
- Simplify:
![-\sqrt{u} + C](https://tex.z-dn.net/?f=-%5Csqrt%7Bu%7D%20%2B%20C)
- Back-Substitute:
![-\sqrt{800-2x} + C](https://tex.z-dn.net/?f=-%5Csqrt%7B800-2x%7D%20%2B%20C)
- Factor:
![-\sqrt{-2(x - 400)} + C](https://tex.z-dn.net/?f=-%5Csqrt%7B-2%28x%20-%20400%29%7D%20%2B%20C)
<u>Step 4: Identify Domain</u>
We know from a real number line that we cannot have imaginary numbers. Therefore, we cannot have any negatives under the square root.
Our domain for our integrated function would then have to be (-∞, 400]. Anything past 400 would give us an imaginary number.
Find the domain of the function f(x)=2/3x+3 . The given range is -3,0,5,9. A.1,3,19/3,9 b.-4,-2,4/3,4 c.-9,9/2,,3,9 d.0,9/2,12,1
algol13
Answer:
I believe it is C?
Step-by-step explanation: