Scientists are able to detect an El Niño<span> event and its effects on the climate through a variety of technological and natural sciences. One of these natural sciences is dendrochronology, or the study of tree rings. Dendrochronologists study the rings of a tree in order to understand climatic conditions during specific time periods. Thin rings often indicate drier seasons while fatter rings indicate rainy seasons. Depending on where the tree is, scientists can see past El </span>Niño<span> events in trees that exhibit signs of much rainier or drier seasons that normal.</span>
The particles move from an area of high concentration, to an area of low concentration, until the distribution of particles is equal
First, we apply the law of conservation of mass which states that the total mass in a system remains constant.
Therefore, there must be 5.00 g of sulfur and 4.99 g of oxygen in the product. Now, we determine the mass percentage using:
Mass % = (mass of sulfur x 100) / total mass of compound
Mass % = (5 * 100) / (5 + 4.99)
Mass % = 50.05%
The product contains 50.05% sulfur by mass.
Because area of the container has increased , there will be fewer of collisions per unit area and the pressure will decrease . Volume is inversely proportional to pressure , if the number of particles and temperature is constant
( V = 1/P) and number of particle is proportional to pressure if average Kinetic energy of the particle remain same , the average force particle will remain same too so at some places and there will be more collision and there is greater pressure