The alkali metals are so reactive that they are never found in nature in elemental form. Although some of their ores are abundant, isolating them from their ores is somewhat difficult. For these reasons, the group 1 elements were unknown until the early 19th century, when Sir Humphry Davy first prepared sodium (Na) and potassium (K) by passing an electric current through molten alkalis. (The ashes produced by the combustion of wood are largely composed of potassium and sodium carbonate.) Lithium (Li) was discovered 10 years later when the Swedish chemist Johan Arfwedson was studying the composition of a new Brazilian mineral. Cesium (Cs) and rubidium (Rb) were not discovered until the 1860s, when Robert Bunsen conducted a systematic search for new elements. Known to chemistry students as the inventor of the Bunsen burner, Bunsen’s spectroscopic studies of ores showed sky blue and deep red emission lines that he attributed to two new elements, Cs and Rb, respectively. Francium (Fr) is found in only trace amounts in nature, so our knowledge of its chemistry is limited. All the isotopes of Fr have very short half-lives, in contrast to the other elements in group 1.
Anything that has mass and volume (takes up space) is called matter.
Answer:
A. 1:3
Explanation:
If we look at the ions shown in the image attached to the question, we will notice that we have aluminum (Al^3+), a trivalent ion combining with the iodide ion (I^-).
Aluminum can easily give out its three outermost electrons to three atoms of iodine. If aluminum gives out its three electrons, it achieves the stable octet structure. Iodine atoms have seven electrons in their outermost shell. They only need one more electrons to complete their octet. This one electron can be gotten by the combination of three iodine atoms with one atom of aluminum. One electron each is transferred from the aluminum atom to each iodine atom to form AlI3 with a ratio of 1:3.
Composed of molecules formed by atoms of two or more different elements.
Answer:
2 H₃PO₄(aq) + 3 Ba(OH)₂(aq) ⇒ Ba₃(PO₄)₂(s) + 6 H₂O(l)
Explanation:
Let's consider the unbalanced equation that occurs when phosphoric acid reacts with barium hydroxide to form water and barium phosphate. This is a neutralization reaction.
H₃PO₄(aq) + Ba(OH)₂(aq) ⇒ Ba₃(PO₄)₂(s) + H₂O(l)
We will balance it using the trial and error method.
First, we will balance Ba atoms by multiplying Ba(OH)₂ by 3 and P atoms by multiplying H₃PO₄ by 2.
2 H₃PO₄(aq) + 3 Ba(OH)₂(aq) ⇒ Ba₃(PO₄)₂(s) + H₂O(l)
Finally, we will get the balanced equation by multiplying H₂O by 6.
2 H₃PO₄(aq) + 3 Ba(OH)₂(aq) ⇒ Ba₃(PO₄)₂(s) + 6 H₂O(l)