Cu =63.5
2 times N =28.02
6 times O =96
96=63.5=28.02=127.07
122/127.07=.96 molecules
Answer:
m= 6.9905 = 7 g
Explanation:
The formula is m= M.n
m= mass (g), M= Molar mass (g/mole), n= moles (moles)
Molar mass of Cu is 63.55
=) m= 63.55*0.11
m= 6.9905 = 7 g
Hurricanes derive their energy from the Latent heat of condensation.
Hence, Option (1) is correct answer.
<h3>What is Latent Heat ? </h3>
The heat that is released or absorbed during a phase change of a substance is known as Latent heat.
<h3>What is Hurricanes ?</h3>
Hurricanes is basically a type of storm called a tropical cyclone. These are intense low pressure areas. Hurricanes derive their energy from the latent heat of CONDENSATION.
Thus from the above conclusion we can say that Hurricanes derive their energy from the Latent heat of condensation.
Hence, Option (1) is correct answer.
Learn more about the Latent heat here: brainly.com/question/5401454
#SPJ4
The loss or gain of electrons
Explanation:
The loss or gain of electrons determines if an atom will become a cation or anion.
A cation is a positively charge ion
An anion is a negatively charged ion.
In an atom, we have sub-atomic particles:
Protons are the positively charged particles
Electrons are negatively charged
Neutrons carry no charges
Only electrons can be lost or gained in chemical processes that forms cations and anions.
When a neutral atom gains electron, it has more electrons than protons. This makes it negatively charged and we call it an anion.
When a neutral atom loses an electron, the number of protons is more. We call it a cation.
Learn more:
Cations brainly.com/question/4670413
#learnwithBrainly
Answer:
111.15 g are required to prepare 500 ml of a 3 M solution
Explanation:
In a 3 M solution of Ca(OH)₂ there are 3 moles of Ca(OH)₂ per liter solution. In 500 ml of this solution, there will be (3 mol/2) 1.5 mol Ca(OH)₂.
Since 1 mol of Ca(OH)₂ has a mass of 74.1 g, 1.5 mol will have a mass of
(1.5 mol Ca(OH)₂ *(74.1 g / 1 mol)) 111.15 g. This mass of Ca(OH)₂ is required to prepare the 500 ml 3 M solution.