Answer:
Step-by-step explanation:
Hello!
The objective of this experiment is to test if two different foam-expanding agents have the same foam expansion capacity
Sample 1 (aqueous film forming foam)
n₁= 5
X[bar]₁= 4.7
S₁= 0.6
Sample 2 (alcohol-type concentrates )
n₂= 5
X[bar]₂= 6.8
S₂= 0.8
Both variables have a normal distribution and σ₁²= σ₂²= σ²= ?
The statistic to use to make the estimation and the hypothesis test is the t-statistic for independent samples.:
t= ![\frac{(X[bar]_1 - X[bar]_2) - (mu_1 - mu_2)}{Sa*\sqrt{\frac{1}{n_1} + \frac{1}{n_2 } } }](https://tex.z-dn.net/?f=%5Cfrac%7B%28X%5Bbar%5D_1%20-%20X%5Bbar%5D_2%29%20-%20%28mu_1%20-%20mu_2%29%7D%7BSa%2A%5Csqrt%7B%5Cfrac%7B1%7D%7Bn_1%7D%20%2B%20%5Cfrac%7B1%7D%7Bn_2%20%7D%20%7D%20%7D)
a) 95% CI
(X[bar]_1 - X[bar]_2) ±
*
Sa²=
=
= 0.5
Sa= 0.707ç

(4.7-6.9) ± 2.306* 
[-4.78; 0.38]
With a 95% confidence level you expect that the interval [-4.78; 0.38] will contain the population mean of the expansion capacity of both agents.
b.
The hypothesis is:
H₀: μ₁ - μ₂= 0
H₁: μ₁ - μ₂≠ 0
α: 0.05
The interval contains the cero, so the decision is to reject the null hypothesis.
<u>Complete question</u>
a. Find a 95% confidence interval on the difference in mean foam expansion of these two agents.
b. Based on the confidence interval, is there evidence to support the claim that there is no difference in mean foam expansion of these two agents?
<span>For "The probability a business major is female" - you're looking for the probability of being female. That the person is a business major is already given. So, P(A|B)
</span>For "The probability a female student is majoring in business" - you're looking for the probability of being majoring in business. That the person is a female is already given. So, P(B|A)
Answer:
SSS
Both these triangles are congruent to each other by SSS congruency
Hope it helps
Answer: I'm not entirely sure, but maybe 1/x^2?
Manipulate the first equation to
y = 22-7z
Then substitute in the second to find z
8(22-7z) + 7z = 127
176-56z+7z = 127
-49z = -49
z = 1
So y = 22-7(1) = 22-7 = 15
y = 15; z = 1