1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lord [1]
2 years ago
15

i beg please help worth 40 points and ill give brainliest if answered right with shown work please help

Mathematics
1 answer:
lisabon 2012 [21]2 years ago
6 0

1:

y = 2x

x + y = 6

3x = 6

<u>x= 2</u>

<u>y = 4</u>

<u />

2:

y = 2x - 5

x + y = 4

x + 2x - 5 = 4

x + 2x = 9

3x = 9

<u>x = 3</u>

<u>y = 1</u>

<u />

3:

x + y = 7

2x - y = 5

x = 7 - y

2x = 14 - 2y

14 - 2y - y = 5

- 9 = - 3y

3y = 9

<u>y = 3</u>

<u>x = 4</u>

<u />

4:

x + 9y = - 6

2x - 9y = 15

9y = 2x - 15

x + 2x - 15 = - 6

3x = 9

<u>x = 3</u>

<u>y = - 1</u>

<u />

5:

x + 2y = 4

y = 2x + 7

2y = 4x + 14

x + 4x + 14 = 4

5x = - 10

<u>x = - 2</u>

<u>y = 3</u>

<u />

6:

x - 4y = 16

y = 1 - x

4y = 4 - 4x

x - 4 + 4x = 16

5x = 20

<u>x = 4</u>

<u>y = -3</u>

<u />

7:

4x - y = 10

x + y = 5

y = 4x - 10

x + 4x - 10 = 5

5x = 15

<u>x=3</u>

<u>y = 2</u>

<u />

8:

2x + y = 10

3x = y

y = 10 - 2x

10 - 2x = 3x

10 = 5x

<u />

<u>x = 2</u>

<u>y = 6</u>

<u />

9:

-5x - y = 20

y = 3x

y = - 5x - 20

-5x - 20 = 3x

8x = - 20

2x = - 5

<u>x = - 2.5</u>

<u>y = - 7.5</u>

<u />

10:

2x - y = -1

x = 17 - 3y

y = 2x + 1

3y = 6x + 3

17 - 6x - 3 = x

14 = 7x

<u>x = 2</u>

<u>y = 3</u>

<u />

11:

3x + y = 3

y = 2x - 7

y = 3 - 3x

3 - 3x = 2x - 7

10 = 5x

<u>x = 2</u>

<u>y = - 3</u>

<u />

12:

2x + 3y = 17

3x - 2y = - 0.5

2y = 3x + .5

y = 1.5x + .25

3y = 4.5x + .75

2x + 4.5x + .75 = 17

16.25 = 6.5x

16.25 / 6.5 = x

<u>x = 2.5</u>

<u>y = 4</u>

<u />

13:

x - 2y = 5

3x + 2y = 23

3x = 15 + 6y

15 + 6y + 2y = 23

8 = 8y

<u>x = 7</u>

<u>y = 1</u>

<u />

14:

2x = 5y + 8

3x + 2y = 31

x = 2.5y + 4

3x = 7.5y + 12

7.5y + 12 + 2y = 31

9.5y = 19

y = 19 / 9.5

<u />

<u>x = 9</u>

<u>y = 2</u>

<u />

took a lot of time so please give brainliest

You might be interested in
Which diagram shows lines that must be parallel lines cut by a transversal
DochEvi [55]
The top one shows they are parallel lines because it shows angles of both lines and the transversal
7 0
3 years ago
Read 2 more answers
(-4/5) (15/8) (7/3) (-1)
hram777 [196]

Answer:

7/2

Step-by-step explanation:

6 0
2 years ago
What is the unknown fraction?
vaieri [72.5K]

Answer:

38/100

Step-by-step explanation:

.................................................

3 0
3 years ago
URGENT!!
Lapatulllka [165]

Answer:

f[g(4)] = 4

Step-by-step explanation:

Given table:

\begin{array}{| c | c | c | c | c | c |}\cline{1-6} x & -6 & -4 & 1 & 3 & 4\\\cline{1-6} f(x) & 4 & -1 & -6 & 1 & 3 \\\cline{1-6} g(x) & 1 & 4 & 3 & -4 & -6 \\\cline{1-6}\end{array}

f[g(4)] is a composite function.

When calculating <u>composite functions</u>, always work from inside the brackets out.

Begin with g(4):  g(4) is the value of function g(x) when x = 4.

From inspection of the given table, g(4) = -6

Therefore, f[g(4)] = f(-6)

f(-6) is the value of function f(x) when x = -6.

From inspection of the given table, f(-6) = 4

Therefore, f[g(4)] = 4

3 0
2 years ago
Read 2 more answers
Solve the following systems of equations using the matrix method: a. 3x1 + 2x2 + 4x3 = 5 2x1 + 5x2 + 3x3 = 17 7x1 + 2x2 + 2x3 =
lara [203]

Answer:

a. The solutions are

\left[\begin{array}{c}x_1&x_2&x_3\\\end{array}\right]=\begin{pmatrix}\frac{11}{13}\\ \frac{50}{13}\\ -\frac{17}{13}\end{pmatrix}

b. The solutions are

\left[\begin{array}{c}x&y&z\\\end{array}\right]=\begin{pmatrix}\frac{54}{235}\\ \frac{6}{47}\\ \frac{24}{235}\end{pmatrix}

c. The solutions are

\left[\begin{array}{c}x_1&x_2&x_3&x_4\\\end{array}\right]=\begin{pmatrix}\frac{22}{9}\\ \frac{164}{9}\\ \frac{139}{9}\\ -\frac{37}{3}\end{pmatrix}

Step-by-step explanation:

Solving a system of linear equations using matrix method, we may define a system of equations with the same number of equations as variables as:

A\cdot X=B

where X is the matrix representing the variables of the system,  B is the matrix representing the constants, and A is the coefficient matrix.

Then the solution is this:

X=A^{-1}B

a. Given the system:

3x_1 + 2x_2 + 4x_3 = 5 \\2x_1 + 5x_2 + 3x_3 = 17 \\7x_1 + 2x_2 + 2x_3 = 11

The coefficient matrix is:

A=\left[\begin{array}{ccc}3&2&4\\2&5&3\\7&2&2\end{array}\right]

The variable matrix is:

X=\left[\begin{array}{c}x_1&x_2&x_3\\\end{array}\right]

The constant matrix is:

B=\left[\begin{array}{c}5&17&11\\\end{array}\right]

First, we need to find the inverse of the A matrix. To find the inverse matrix, augment it with the identity matrix and perform row operations trying to make the identity matrix to the left. Then to the right will be inverse matrix.

So, augment the matrix with identity matrix:

\left[ \begin{array}{ccc|ccc}3&2&4&1&0&0 \\\\ 2&5&3&0&1&0 \\\\ 7&2&2&0&0&1\end{array}\right]

This matrix can be transformed by a sequence of elementary row operations to the matrix

\left[ \begin{array}{ccc|ccc}1&0&0&- \frac{2}{39}&- \frac{2}{39}&\frac{7}{39} \\\\ 0&1&0&- \frac{17}{78}&\frac{11}{39}&\frac{1}{78} \\\\ 0&0&1&\frac{31}{78}&- \frac{4}{39}&- \frac{11}{78}\end{array}\right]

And the inverse of the A matrix is

A^{-1}=\left[ \begin{array}{ccc} - \frac{2}{39} & - \frac{2}{39} & \frac{7}{39} \\\\ - \frac{17}{78} & \frac{11}{39} & \frac{1}{78} \\\\ \frac{31}{78} & - \frac{4}{39} & - \frac{11}{78} \end{array} \right]

Next, multiply A^ {-1} by B

X=A^{-1}\cdot B

\left[\begin{array}{c}x_1&x_2&x_3\\\end{array}\right]=\left[ \begin{array}{ccc} - \frac{2}{39} & - \frac{2}{39} & \frac{7}{39} \\\\ - \frac{17}{78} & \frac{11}{39} & \frac{1}{78} \\\\ \frac{31}{78} & - \frac{4}{39} & - \frac{11}{78} \end{array} \right] \cdot \left[\begin{array}{c}5&17&11\end{array}\right]

\left[\begin{array}{c}x_1&x_2&x_3\\\end{array}\right]=\begin{pmatrix}-\frac{2}{39}&-\frac{2}{39}&\frac{7}{39}\\ -\frac{17}{78}&\frac{11}{39}&\frac{1}{78}\\ \frac{31}{78}&-\frac{4}{39}&-\frac{11}{78}\end{pmatrix}\begin{pmatrix}5\\ 17\\ 11\end{pmatrix}=\begin{pmatrix}\frac{11}{13}\\ \frac{50}{13}\\ -\frac{17}{13}\end{pmatrix}

The solutions are

\left[\begin{array}{c}x_1&x_2&x_3\\\end{array}\right]=\begin{pmatrix}\frac{11}{13}\\ \frac{50}{13}\\ -\frac{17}{13}\end{pmatrix}

b. To solve this system of equations

x -y - z = 0 \\30x + 40y = 12 \\30x + 50z = 12

The coefficient matrix is:

A=\left[\begin{array}{ccc}1&-1&-1\\30&40&0\\30&0&50\end{array}\right]

The variable matrix is:

X=\left[\begin{array}{c}x&y&z\\\end{array}\right]

The constant matrix is:

B=\left[\begin{array}{c}0&12&12\\\end{array}\right]

The inverse of the A matrix is

A^{-1}=\left[ \begin{array}{ccc} \frac{20}{47} & \frac{1}{94} & \frac{2}{235} \\\\ - \frac{15}{47} & \frac{4}{235} & - \frac{3}{470} \\\\ - \frac{12}{47} & - \frac{3}{470} & \frac{7}{470} \end{array} \right]

The solutions are

\left[\begin{array}{c}x&y&z\\\end{array}\right]=\begin{pmatrix}\frac{54}{235}\\ \frac{6}{47}\\ \frac{24}{235}\end{pmatrix}

c. To solve this system of equations

4x_1 + 2x_2 + x_3 + 5x_4 = 0 \\3x_1 + x_2 + 4x_3 + 7x_4 = 1\\ 2x_1 + 3x_2 + x_3 + 6x_4 = 1 \\3x_1 + x_2 + x_3 + 3x_4 = 4\\

The coefficient matrix is:

A=\left[\begin{array}{cccc}4&2&1&5\\3&1&4&7\\2&3&1&6\\3&1&1&3\end{array}\right]

The variable matrix is:

X=\left[\begin{array}{c}x_1&x_2&x_3&x_4\\\end{array}\right]

The constant matrix is:

B=\left[\begin{array}{c}0&1&1&4\\\end{array}\right]

The inverse of the A matrix is

A^{-1}=\left[ \begin{array}{cccc} - \frac{1}{9} & - \frac{1}{9} & - \frac{1}{9} & \frac{2}{3} \\\\ - \frac{32}{9} & - \frac{5}{9} & \frac{13}{9} & \frac{13}{3} \\\\ - \frac{28}{9} & - \frac{1}{9} & \frac{8}{9} & \frac{11}{3} \\\\ \frac{7}{3} & \frac{1}{3} & - \frac{2}{3} & -3 \end{array} \right]

The solutions are

\left[\begin{array}{c}x_1&x_2&x_3&x_4\\\end{array}\right]=\begin{pmatrix}\frac{22}{9}\\ \frac{164}{9}\\ \frac{139}{9}\\ -\frac{37}{3}\end{pmatrix}

7 0
3 years ago
Read 2 more answers
Other questions:
  • A computer is purchased for $1,200 and depreciates at $140 per year. Write a linear equation that
    13·1 answer
  • a un baile asistieron 270 personas.si los boletos de costaban 100 pesos y los de dama 80 pesos y se recaudaron 24 800 pesos por
    15·1 answer
  • What is the product?
    5·1 answer
  • 1 1. You can work at most 20 hours next week. You need to earn at least $92 to cover you weekly expenses. Your dog- walking job
    11·1 answer
  • The graph of a quadratic function has a vertex located at (7,-3) and passes through points (5,5) and (9,5). Which equation best
    10·1 answer
  • Only 2/17 of the teachers were sciolists. If 3000 were not sciolists how many teachers were there in all
    14·2 answers
  • I need this done by today someone plzz help me !!!
    12·1 answer
  • What is a ratio? i am confused
    13·2 answers
  • Please help my teacher has been waiting for 30 full mniutes
    6·1 answer
  • We are in school 9 months out of the year. What percent of the year are we in<br> school?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!