*swipe* that th sound of me stealin points tehe
Answer:
p = 3.5 or p = 7/2
Step-by-step explanation:
-4p+9= -5
or, -4p = - 14
or, p = -14/-4
or, p = 7/2 = 3.5
Answer:
The minimum average cost is $643.75
It should be built 62.5 machines to achieve the minimum average cost
Step-by-step explanation:
The equation that represents the cost C to produce x DVD/BLU-ray players is C = 0.04x² - 5x + 800
To find the minimum cost differentiate C to equate it by 0 to find the average cost per machine and to find the value of the minimum cost
∵ C = 0.04x² - 5x + 800
- Differentiate C with respect to x
∴ 
∴ 
- Equate
by 0
∴ 0.08x - 5 = 0
- Add 5 to both sides
∴ 0.08x = 5
- Divide both sides by 0.08
∴ x = 62.5
That means the minimum average cost is at x = 62.5
Substitute the value of x in C to find the minimum average cost
∵ C = 0.04(62.5)² - 5(62.5) + 800
∴ C = 643.75
∵ C is the average cost
∴ The minimum average cost is $643.75
∵ x is the number of the machines
∴ It should be built 62.5 machines to achieve the minimum
average cost
The answer here is C. Let's proof.
Since we are dealing with whole numbers, select a constant for x to satisfy that y will result a whole number.
If x = 1, then the function would be 1 + 4y = 9. Solving for y,
4y = 9 - 1
4y = 8
y = 2
In ordered pair, that is (1,2)
Next, if x = 5, then 5 + 4y = 9. Solving for y,
4y = 9 - 5
4y = 4
y = 1
In ordered pair, that is (5,1).
Lastly, if x = 9, then 9 + 4y = 9. Solving for y,
4y = 9 - 9
y = 0/4
y = 0
In order pair, that is (9,0).
By using the information you have, you can use make a proportion to solve this.
You burn 4 logs in 2 hours or 4/2. You are comparing this to your unknown number, x, over 8 hours. So it looks like this 4/2 = x/8. You read it as four logs in two hours is x logs in eight hours. To solve you cross multiply. You do 2 times x and 4 times eight. That would be 2x= 32. Your goal is getting x alone, so divide each side by 2. Your answer is x= 16 logs in eight hours. You can solve this different and maybe easier ways but this is the best way if you want to get used to going this in algebra. Hope that helps! :)