Answer:
-35 
Explanation:
<u>Deceleration is the complete opposite of acceleration and is calculated by adding a negative sign to the formula for finding acceleration.</u>
Since acceleration is calculated by diving the change in velocity with time, deceleration will become:
Deceleration = -Δv/t, where Δv = change in velocity and t = time
In this case, Δv = 70 m/s and t = 2 s, hence;
Deceleration = -70/2 = -35 
<em>The deceleration is 35 </em>
<em>.</em>
The initial velocity is
v(0) = 16.5 ft/s
While in the water, the acceleration is
a(t) = 10 - 0.
![\frac{dv}{dt} =10-0.8v \\\\ \frac{dv}{10-0.8v}=dt \\\\ \int_{16.5}^{v} \, \frac{dv}{10-0.8v} = \int_{0}^{t} dt \\\\ - \frac{1}{0.8} [ln(10-0.8v)]_{16.5}^{v}=t \\\\ ln \frac{10-0.8v}{-3.2}=-0.8t \\\\ \frac{0.8v -10}{3.2} =e^{-0.8t} \\\\ 0.8v = 10 + 3.2e^{-0.8t} \\\\ v=12.5+4e^{-0.08t}](https://tex.z-dn.net/?f=%20%5Cfrac%7Bdv%7D%7Bdt%7D%20%3D10-0.8v%20%5C%5C%5C%5C%20%20%5Cfrac%7Bdv%7D%7B10-0.8v%7D%3Ddt%20%5C%5C%5C%5C%20%5Cint_%7B16.5%7D%5E%7Bv%7D%20%5C%2C%20%20%5Cfrac%7Bdv%7D%7B10-0.8v%7D%20%20%3D%20%5Cint_%7B0%7D%5E%7Bt%7D%20dt%20%5C%5C%5C%5C%20-%20%5Cfrac%7B1%7D%7B0.8%7D%20%5Bln%2810-0.8v%29%5D_%7B16.5%7D%5E%7Bv%7D%3Dt%20%5C%5C%5C%5C%20ln%20%5Cfrac%7B10-0.8v%7D%7B-3.2%7D%3D-0.8t%20%5C%5C%5C%5C%20%20%5Cfrac%7B0.8v%20-10%7D%7B3.2%7D%20%20%3De%5E%7B-0.8t%7D%20%5C%5C%5C%5C%200.8v%20%3D%2010%20%2B%203.2e%5E%7B-0.8t%7D%20%5C%5C%5C%5C%20v%3D12.5%2B4e%5E%7B-0.08t%7D)
The velocity function is

It satisfies the condition that v(0) = 16.5 ft/s.
When t = 5.7s, obtain

The depth of the lake is
![d=\int_{0}^{5.7} \, (12.5+4e^{-0.8t})dt \\\\ = 12.5(5.7)+ \frac{4}{(-0.8)}[e^{-0.8t}]_{0}^{5.7} \\\\ =71.25-5(0.0105-1) =76.198 \, ft](https://tex.z-dn.net/?f=d%3D%5Cint_%7B0%7D%5E%7B5.7%7D%20%5C%2C%20%2812.5%2B4e%5E%7B-0.8t%7D%29dt%20%5C%5C%5C%5C%20%3D%2012.5%285.7%29%2B%20%5Cfrac%7B4%7D%7B%28-0.8%29%7D%5Be%5E%7B-0.8t%7D%5D_%7B0%7D%5E%7B5.7%7D%20%5C%5C%5C%5C%20%3D71.25-5%280.0105-1%29%20%3D76.198%20%5C%2C%20ft)
Answer:
The velocity at the bottom of the lake is 12.5 ft/s
The depth of the lake is 76.2 ft
net force is mass multiplied by acceleration. hope this helps
Answer:
The right option is (d) substance undergoing a change of state
Explanation:
Latent Heat: Latent heat is the heat required to change the state of a substance without change in temperature. Latent heat is also known as hidden heat because the heat is not visible. The unit is Joules (J).
Latent heat is divided into two:
⇒ Latent Heat of fusion
⇒ Latent Heat of vaporization.
Latent Heat of fusion: This is the heat energy required to convert a substance from its solid form to its liquid form without change in temperature. E.g (Ice) When ice is heated, its temperature rise steadily until a certain temperature is reached when the solid begins to melts.
Latent Heat of vaporization: This is the heat required to change a liquid substance to vapor without a change in temperature. The latent heat depend on the mass of the liquid and the nature of the liquid. E.g When water is heated from a known temperature its boiling point (100°C) When more heat is supplied to its boiling temperature, it continue to boil without a change in temperature.
From The above, Latent heat brings about a change of state of a substance at a steady temperature.
The right option is (d) substance undergoing a change of state
(a) The acceleration of the salt shaker is 1.18 m/s².
(b) The distance traveled by the baseball player before coming to rest is 204.1 m.
<h3>
Acceleration of the salt shaker</h3>
The acceleration of the salt shaker at the given coefficient of kinetic friction is determined as follows;
a = μg
a = 0.12 x 9.8
a = 1.18 m/s²
Acceleration of the baseball player is calculated as follows;
a = μg
a = 0.4 x 9.8
a = 3.92 m/s²
<h3>Distance traveled by the baseball player</h3>
The distance traveled by the baseball player before coming to rest is calculated as follows;
v² = u² - 2as
0 = 40² - 2(3.92)s
0 = 1600 - 7.84s
7.84s = 1600
s = 204.1 m
The complete question is below:
A baseball player slides into third base with an initial speed of 40 m/s. If the coefficient of kinetic friction between the player and the ground is 0.40, how far does the player slide before coming to rest?
Learn more about coefficient of friction here: brainly.com/question/20241845