Answer:
Explanation:
Comment
You have to read this carefully enough that you don't mix up energy and forces.
Gravity is a force. If you don't believe me try jumping off a building. Which way are you going to go and why? Down because gravity attracts your mass.
So Magnetism must be a force as well. It acts in one direction, but not a specific one the way gravity acts). It also either attracts or repulses (pushes an object away)
Answer A
Answer:
The value of bending stress on the pinion 35.38 M pa
Explanation:
Given data
m = 2 mm
Pressure angle
= 20°
No. of teeth T = 17
Face width (b) = 20 mm
Speed N = 1650 rpm
Power = 1200 W
Diameter of the pinion gear
D = m T
D = 2 × 17
D = 34 mm
Velocity of the pinion gear



Form factor for the pinion gear is
Y = 0.303
Now

Force on gear tooth


F = 408.73 N
Now the bending stress is given by the formula


= 35.38 M pa
This is the value of bending stress on the pinion
Answer:
Fc = 89.67N
Explanation:
Since the rope is unstretchable, the total length will always be 34m.
From the attached diagram, you can see that we can calculate the new separation distance from the tree and the stucked car H as follows:
L1+L2=34m
Replacing this value in the previous equation:
Solving for H:

We can now, calculate the angle between L1 and the 2m segment:

If we make a sum of forces in the midpoint of the rope we get:
where T is the tension on the rope and F is the exerted force of 87N.
Solving for T, we get the tension on the rope which is equal to the force exerted on the car:
