The net force on the block parallel to the incline is
∑ F = -mg sin(θ) = ma
where m is the mass of the block, g = 9.8 m/s² is the acceleration due to gravity, θ is the angle the incline makes with the horizontal, and a is the acceleration of the block. Solving for a gives
a = -g sin(θ)
so the block would slide down the incline with acceleration
a = - (9.8 m/s²) sin(30°) = -4.9 m/s²
Answer:
It looks like the second one is the correct answer.
<span>The electric force between two charged objects depends on
the product of their charges and the distance between them.</span>
Answer:

Explanation:
The magnitude of the gravitational force between two objects is given by the equation:

where
G is the gravitational constant
m1, m2 are the masses of the two objects
r is the separation between the objects
The gravitational force is always attractive.
In this problem, we have:
is the mass of the Earth
is the mass of the Moon
is the separation between the Earth and the Moon
Therefore, the gravitational force between them is

Answer:
The gravity from the person's hand is weaker than the gravity from the pull of the earth
Explanation:
The gravity from the person's hand is weaker than the gravity from the pull of the earth