It makes your clothes smell great
How strong the bonds are between the atoms
Explanation:
The species or elements which gain electrons and reduces itself are known as oxidizing agent or oxidant.
Ability of an element to act as an oxidizing agent depends on its electrode potential.
The electrode potential of
is 0.52 V.
The electrode potential of
is -0.41 V.
The electrode potential of
is -2.38 V.
Greater is the value of electrode potential, stronger will be the oxidizing agent.
Therefore, rank of these species by their ability to act as an oxidizing agent are as follows.
>
> 
Answer : The correct option is, transverse wave.
Explanation :
Longitudinal waves : It is defined as the waves in which the particles of the medium move in the direction of the wave.
Transverse wave : It is defined as the waves in which the particles of the medium travel perpendicularly to the direction of the wave.
Surface wave : It is defined as a combination of transverse and longitudinal waves.
From the given image we conclude that, this illustration depict the transverse wave because the particles of the medium move perpendicularly to the direction of the wave.
Hence, the type of wave is, transverse wave
Part A
75.0 mL of 0.10 M HF; 55.0 mL of 0.15 M NaF
This combination will form a buffer.
Explanation
Here, weak acid HF and its conjugate base F- is available in the solution
Part B
150.0 mL of 0.10 M HF; 135.0 mL of 0.175 M HCl
This combination cannot form a buffer.
Explanation
Here, moles of HF = 0.15 x 0.1 = 0.015 moles
Moles of HCl = 0.135 x 0.175 = 0.023
Since HCl is a strong acid and the number of HCl is higher than HF. This prevents the dissociation of HF and the conjugate base F- will not be available in the solution
Part C
165.0 mL of 0.10 M HF; 135.0 mL of 0.050 M KOH
This combination will form a buffer.
Explanation
Moles of HF = 0.165 x 0.1 = 0.0165 moles
Moles of KOH = 0.135 x 0.05 = 0.00675 moles
Moles of KOH is not sufficient for the complete neutralization of HF. Thus weak acid HF and its conjugate base F- is available in the solution and form a buffer
Part D
125.0 mL of 0.15 M CH3NH2; 120.0 mL of 0.25 M CH3NH3Cl
This combination will form a buffer
Explanation
Here, weak acid CH3NH3+ and its conjugate base CH3NH2 is available in the solution and form a buffer
Part E
105.0 mL of 0.15 M CH3NH2; 95.0 mL of 0.10 M HCl
This combination will form a buffer
Explanation
Moles of CH3NH2 = 0.105 x 0.15 = 0.01575 moles
Moles of HCl = 0.095 x 0.1 = 0.0095 moles
Thus the HCl completely reacts with CH3NH2 and converts a part of the CH3NH2 to CH3NH3+. This results weak acid CH3NH3+ and its conjugate base CH3NH2 is in the solution and form a buffer