Answer:
Power, P = 924.15 watts
Explanation:
Given that,
Length of the ramp, l = 12 m
Mass of the person, m = 55.8 kg
Angle between the inclined plane and the horizontal, 
Time, t = 3 s
Let h is the height of the hill from the horizontal,


h = 5.07 m
Let P is the power output necessary for a person to run up long hill side as :



P = 924.15 watts
So, the minimum average power output necessary for a person to run up is 924.15 watts. Hence, this is the required solution.
Answer:
the one going faster would prolly stop and the one it hit would start rolling the opposite direction it was. like think about if u were playing pool.
Explanation:
<span>Hey there!
Awesome question=)
Siobhan can place it on a regular scale(0 gravity area), or she can use the "balance scale"
</span>
I hope this helps;)
Answer:
(B) 13.9 m
(C) 1.06 s
Explanation:
Given:
v₀ = 5.2 m/s
y₀ = 12.5 m
(A) The acceleration in free fall is -9.8 m/s².
(B) At maximum height, v = 0 m/s.
v² = v₀² + 2aΔy
(0 m/s)² = (5.2 m/s)² + 2 (-9.8 m/s²) (y − 12.5 m)
y = 13.9 m
(C) When the shell returns to a height of 12.5 m, the final velocity v is -5.2 m/s.
v = at + v₀
-5.2 m/s = (-9.8 m/s²) t + 5.2 m/s
t = 1.06 s
The magnitude of the force is 18.6 N
Explanation:
The work done by a force on an object is given by

where
F is the magnitude of the force
d is the displacement of the object
is the angle between the direction of the force and of the displacement
For the block in this problem, we have
is the work done
d = 1.35 m is the displacement of the block
is the angle between the force and the displacement
Solving for F, we find the magnitude of the force:

Learn more about work here:
brainly.com/question/6763771
brainly.com/question/6443626
#LearnwithBrainly