Carbon dioxide pass through a leaf stomata.
Answer:
39.3%
Explanation:
CaF2 + H2SO4 --> CaSO4 + 2HF
We must first determine the limiting reactant, the limiting reactant is the reactant that yields the least number of moles of products. The question explicitly says that H2SO4 is in excess so CaF2 is the limiting reactant hence:
For CaF2;
Number of moles reacted= mass/molar mass
Molar mass of CaF2= 78.07 g/mol
Number of moles reacted= 11g/78.07 g/mol = 0.14 moles of Calcium flouride
Since 1 mole of calcium fluoride yields two moles of 2 moles hydrogen fluoride
0.14 moles of calcium fluoride will yield 0.14×2= 0.28 moles of hydrogen fluoride
Mass of hydrogen fluoride formed (theoretical yield) = number of moles× molar mass
Molar mass of hydrogen fluoride= 20.01 g/mol
Mass of HF= 0.28 moles × 20.01 g/mol= 5.6 g ( theoretical yield of HF)
Actual yield of HF was given in the question as 2.2g
% yield of HF= actual yield/ theoretical yield ×100
%yield of HF= 2.2/5.6 ×100
% yield of HF= 39.3%
I am pretty sure it’s D.Sulfur
The number of atoms of each element :
C : 1 atom
H : 3 atoms
Br = 1 atom
<h3>Further explanation</h3>
Given
Bromomethane-CH₃Br
Required
The number of atoms
Solution
The empirical formula is the smallest comparison of atoms of compound forming elements.
A molecular formula is a formula that shows the number of atomic elements that make up a compound.
The number of atoms in a compound is generally indicated as a subscript after the atom
C : 1 atom
H : 3 atoms
Br = 1 atom
Total 5 atoms
Answer: Option (b) is the correct answer.
Explanation:
As on increasing the temperature, the molecules gain more kinetic energy due to which they tend to collide and move rapidly from one place to another.
Thus, we can conclude that when temperature is increased, the kinetic energy of the molecules increases.
This means that temperature is directly proportional to the average kinetic energy of a gas.