Answer:
Electron microscopes differ from light microscopes in that they produce an image of a specimen by using a beam of electrons rather than a beam of light. Electrons have much a shorter wavelength than visible light, and this allows electron microscopes to produce higher-resolution images than standard light microscopes.
Explanation:
Hello, 3Coli Here!
Your Answer is Here:
I would recheck, redo, and revise my answers, if necessary. Also, I can look at the lesson again, if I forgot something. So that's what I would do.
Hopefully, this helps!
Ask your question below!
Answer:

Explanation:
Hello!
In this case, since these calorimetry problems are characterized by the fact that the calorimeter absorbs the heat released by the combustion of the substance, we can write:

Thus, given the temperature change and the total heat capacity, we obtain the following total heat of reaction:

Now, by dividing by the moles in 1.04 g of cyclopropane (42.09 g/mol) we obtain the enthalpy of combustion of this fuel:

Best regards!
Answer:
Pressure will increase since their is not much room
please give brainliest
Explanation:
The first one is substance 3
The second one is Oxygen, Helium, and carbon dioxide
The third one is the oil floats on top of the water