Answer:
this isn't immediately clear, it can be seen in ... CO2? 1. 6.0 × 10−23 g. 2. 44 g. 3. 7.31 × 10−23 g correct. 4. 6.0 × 10. 23 g. 5. 7.31 × 10 ... 40.0 grams of S will react leaving 10.0 grams. S unreacted. 013. 10.0 points ... FeCl2 and K2CO3 is ... 9. 1. There is no reaction. 2. KCl electrolyte. 3. CO2 gas. 4. FeCO3 precipitate. correct.
Explanation:
Answer:
Explanation: The strengths of the inter molecular forces varies as follows -

The normal boiling point of CSe2 is 125°C and that of CS2 is 116°C, which explains the trend that as we move down the group, the boiling point of e compound increases as the size increases.
This usually happens because larger and heavier atoms have a tendency to exhibit greater inter molecular strengths due to the increase in size . As the size increases, the valence shell electrons move far away from the nucleus, thus has a greater tendency to attract the temporary dipoles.
And larger the inter molecular forces, more tightly the electrons will be held to each other and thus more thermal energy would be required to break the bonds between them.
When that happens, you get a plasma — the fourth state of matter.
Answer:
2Li(s) + ⅛S₈(s, rhombic) + 2O₂(g) → Li₂SO₄(s)
Explanation:
A thermochemical equation must show the formation of 1 mol of a substance from its elements in their most stable state,.
The only equation that meets those conditions is the last one.
A and B are wrong , because they show Li₂SO₄ as a reactant, not a product.
C is wrong because Li⁺ and SO₄²⁻ are not elements.
D is wrong because it shows the formation of 8 mol of Li₂SO₄.
Answer: the basic difference is Exergonic reactions release energy and an endergonic reactions absorb energy .
HOPE THIS HELPS!!!