Answer:
Na2SO4 means: two moles sodium (45.98 g), one mole sulfur (32.06 g), and four moles oxygen (64.00 g) combine to form one mole of sodium sulfate (142.04 g).
Explanation:
<span>4 Al + 3 O2 → 2 Al2O3
(10.0 g Al) / (26.98154 g Al/mol) = 0.37062 mol Al
(19.0 g O2) / (31.99886 g O2/mol) = 0.59377 mol O2
0.37062 mole of Al would react completely with 0.37062 x (3/4) = 0.277965 mole of O2, but there is more O2 present than that, so O2 is in excess.
((0.59377 mol O2 initially) - (0.277965 mol O2 reacted)) x (31.99886 g O2/mol) =
10.1 g O2 left over</span><span>
</span>
Answer:
2.2%
Explanation:
Percentage error,
You apply the formula,
[(Estimated value - Actual value)/Actual value] × 100%
; [(43.26 - 42.32)/42.32] × 100
; (0.94/42.32) × 100
; 0.022 × 100
Percent error = 2.2%
The artificial fixation of nitrogen (N2) has enormous energy, environmental, and societal impact, the most important of which is the synthesis of ammonia (NH3) for fertilizers that help support nearly half of the world's population.
<h3>Artificial fixation of nitrogen</h3>
a) The equilibrium constant expression is Kp=PCH4 PH2 OP CO×PH 23.
(b) (i) As the pressure increases, the equilibrium will shift to the left so that less number of moles are produced.
(ii) For an exothermic reaction, with the increase in temperature, the equilibrium will shift in the backward direction.
(iii) When a catalyst is used, the equilibrium is not disturbed. The equilibrium is quickly attained
To learn more about equilibrium constant visit the link
brainly.com/question/10038290
#SPJ4
Answer:
Difussion
Explanation:
Diffusion is the result of a totally random phenomenon in which the molecules of a fluid come and go between two vessels that can be connected by a pipe. These molecules travel in a single direction, where the solute is more concentrated to where it is more diluted.
This movement of particles will be modified according to the length or area of the pipe and the concentration of solute. The greater the difference in solute concentration along the tube, the greater the diffusion