The density of each half of the coin is 10.49 g/cm3
In science density is defined as the ratio of mass to volume of an object.
Density is an intrinsic property.It is not affect by the amount of substance present.
This implies that each half of the broken coin must have the same density since it it is an inherent property of every silver material.
The density of each part of the coin therefore is 10.49 g/cm3.
Learn more: brainly.com/question/18320053
Answer:
a, b
Explanation:
Electrolytes dissociate to make ions, because of it they conduct electricity.
AB+XY->AY+XB
We know that the answer would be KCl because of the switching that takes place during a double displacement reaction. Just like Zn and MnO4 switched and combined, the remaining elements, K and Cl, will combine.
We know that the answer is simply KCl because both K and Cl have an ion of only +/-1, meaning when they cross, no suffixes are made, since their ions are only 1.
For example, if you combined Mg with Cl, you would get MgCl2, because Mg has an ion of +2.
I hope this helps!
Answer: The pH of the solution is 11.2
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per liter of the solution.

where,
n = moles of solute
= volume of solution in ml
moles of
=
(1g=1000mg)
Now put all the given values in the formula of molality, we get


pH or pOH is the measure of acidity or alkalinity of a solution.
pH is calculated by taking negative logarithm of hydrogen ion concentration.
![pOH=-\log [OH^-]](https://tex.z-dn.net/?f=pOH%3D-%5Clog%20%5BOH%5E-%5D)

According to stoichiometry,
1 mole of
gives 2 mole of
Thus 0.0298 moles of
gives =
moles of
Putting in the values:
![pOH=-\log[0.0596]=2.82](https://tex.z-dn.net/?f=pOH%3D-%5Clog%5B0.0596%5D%3D2.82)



Thus the pH of the solution is 11.2
Answer:
The expression to calculate the mass of the reactant is 
Explanation:
<em>The amount of heat released is equal to the amount of heat released per gram of reactant times the mass of the reactant.</em> To keep to coherence between units we need to transform 1,080 J to kJ. We do so with proportions:

Then,
