Vinegar is an heterogeneous mixture
Explanation:
Answer:
1.35 g
Explanation:
Data Given:
mass of Potassium Permagnate (KMnO₄) = 3.34 g
Mass of Oxygen: ?
Solution:
First find the percentage composition of Oxygen in Potassium Permagnate (KMnO₄)
So,
Molar Mass of KMnO₄ = 39 + 55 + 4(16)
Molar Mass of KMnO₄ = 158 g/mol
Calculate the mole percent composition of Oxygen in Potassium Permagnate (KMnO₄).
Mass contributed by Oxygen (O) = 4 (16) = 64 g
Since the percentage of compound is 100
So,
Percent of Oxygen (O) = 64 / 158 x 100
Percent of Oxygen (O) = 40.5 %
It means that for ever gram of Potassium Permagnate (KMnO₄) there is 0.405 g of Oxygen (O) is present.
So,
for the 3.34 grams of Potassium Permagnate (KMnO₄) the mass of Oxygen will be
mass of Oxygen (O) = 0.405 x 3.34 g
mass of Oxygen (O) = 1.35 g
I got this idk if it's correct: For measuring large distances, the kilometer (103 or 1000 meters) is often used. The basic unit of volume in the metric system is the liter (l). The most common derived unit is the milliliter (ml) (10-3 or 1/1000 of a liter). The volume of a milliliter is equal to the volume of a cube 1 centimeter per side.
Answer:
Dynamic equilibrium occurs when the rate of the forward reaction equals the rate of the reverse reaction:
Explanation:
Reaction quotient is the ratio of product of concentrations of products to product of concentrations of reactants at any time.
The same ratio at equilibrium (when rate of forward reaction becomes equal to rate of backward reaction) is equilibrium constant.
when Q < Kc, a forward reaction is favored.
When when Q > Kc, a backward or reverse reaction is favored
So the first statement that
a) A reaction quotient (Q) larger than the equilibrium constant (K) means that the reaction will favor the production of more products: false
b) No the rate of forward and backward reaction are equal.
c) c. Dynamic equilibrium occurs when the rate of the forward reaction equals the rate of the reverse reaction: True
d) Dynamic equilibrium indicates that the amount of reactants and products are equal: This could be static equilibrium but not dynamic.
Answer:
Ksp = [Ca⁺²] × [C₂O₄⁻²]
Explanation:
Step 1: Write the balanced reaction for the dissociation of calcium oxalate
CaC₂O₄(s) ⇄ Ca⁺²(aq) + C₂O₄⁻²(aq)
Step 2: Write the expression for the solubility product constant (Ksp) of calcium oxalate
The solubility product constant is the equilibrium constant for the dissociation reaction, that is, it is equal to the product of the concentrations of the products raised to their stoichiometric coefficients divided by the product of the concentrations of the reactants raised to their stoichiometric coefficients. It doesn't include solids nor pure liquids because their activities are 1.
Ksp = [Ca⁺²] × [C₂O₄⁻²]