Answer:
2.5 cm
Step-by-step explanation:
Rectangle A L x W = 40
Rectangle B L * W = 1/2 (40)
8 * W = 20
W = 2.5 cm
La franja amarilla del rectángulo tiene un área de 30 centímetros cuadrados.
<h3>¿Cuál es el área de la franja amarilla del rectángulo?</h3>
En este problema tenemos un rectángulo formado por dos cuadrados que se traslapan uno al otro. La franja amarilla es el área en la que los cuadrados se traslapan. La anchura del rectángulo es descrita por la siguiente ecuación:
(10 - x) + 2 · x = 17
Donde x se mide en centímetros.
A continuación, despejamos x en la ecuación descrita:
10 + x = 17
x = 7
Ahora, el área de la franja amarilla se determina mediante la fórmula de area de un rectángulo:
A = b · h
Donde:
- b - Base del rectángulo, en centímetros.
- h - Altura del rectángulo, en centímetros.
- A - Área del rectángulo, en centímetros cuadrados.
A = (10 - 7) · 10
A = 3 · 10
A = 30
El área de la franja amarilla del rectángulo es igual a 30 centímetros cuadrados.
Para aprender más sobre áreas de rectángulos: brainly.com/question/23058403
#SPJ1
Answer:
v = 7
is the value for which
x = (-21 - √301)/10
is a solution to the quadratic equation
5x² + 21x + v = 0
Step-by-step explanation:
Given that
x = (-21 - √301)/10 .....................(1)
is a root of the quadratic equation
5x² + 21x + v = 0 ........................(2)
We want to find the value of v foe which the equation is true.
Consider the quadratic formula
x = [-b ± √(b² - 4av)]/2a ..................(3)
Comparing (3) with (2), notice that
b = 21
2a = 10
=> a = 10/2 = 5
and
b² - 4av = 301
=> 21² - 4(5)v = 301
-20v = 301 - 441
-20v = -140
v = -140/(-20)
v = 7
That is a = 5, b = 21, and v = 7
The equation is then
5x² + 21x + 7 = 0
Answer:
The Answer is c: 4x5 + x3 + 2x2 – 3
Step-by-step explanation: