For free falling bodies, the final velocity may be calculated through the equation,
Vf = gt
Where g is the acceleration due to gravity (9.8 m/s²) and t is the time elapsed. Substituting the known values,
Vf = (9.8 m/s²) x (4 s) = 39.2 m/s
Therefore, the object's velocity is approximately 39.2 m/s.
Dont be rude she's asking you that the question Ugh
Oh and the answer is Liquid water even though water is already liquid ok its just water okay
Answer:
C
Explanation:
The electric field inside a conductor is always zero if the charges inside the conductor are not moving.
Since the electron are not moving then they must be in electrostatic equilibrium which means the electric field inside the conductor is zero. if the electric field existed inside the conductor then there will be net force on all the electrons and the electrons will accelerate.
Answer: 0.258
Explanation:
The resistance
of a wire is calculated by the following formula:
(1)
Where:
is the resistivity of the material the wire is made of. For aluminium is
and for copper is 
is the length of the wire, which in the case of aluminium is
, and in the case of copper is 
is the transversal area of the wire. In this case is a circumference for both wires, so we will use the formula of the area of the circumference:
(2) Where
is the diameter of the circumference.
For aluminium wire the diameter is
and for copper is 
So, in this problem we have two transversal areas:
<u>For aluminium:</u>

(3)
<u>For copper:</u>

(4)
Now we have to calculate the resistance for each wire:
<u>Aluminium wire:</u>
(5)
(6) Resistance of aluminium wire
<u>Copper wire:</u>
(6)
(7) Resistance of copper wire
At this point we are able to calculate the ratio of the resistance of both wires:
(8)
(9)
Finally:
This is the ratio