1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SashulF [63]
3 years ago
7

Which of the following structure's primary role is to filter lymph?

Physics
1 answer:
Alborosie3 years ago
6 0

Answer:

Lymph capillaries

Explanation:

You might be interested in
Scientists who study races and their origins are called
trapecia [35]
The answer is B. Bye because B those study speed.
6 0
3 years ago
Read 2 more answers
I'm confusion, can I please get help???
kotykmax [81]

Answer:

Anything below 7.0 is acidic, so the range would be 0 to 7.

Neutral is simply 7, in the middle of the scale.

Lastly, anything above 7.0 is basic or alkaline, so that would be 7 to 14.

Good luck, I hope this helps

7 0
2 years ago
A long thin uniform rod of length 1.50 m is to be suspended from a frictionless pivot located at some point along the rod so tha
Dvinal [7]

Answer:

0.087 m

Explanation:

Length of the rod, L = 1.5 m

Let the mass of the rod is m and d is the distance between the pivot point and the centre of mass.

time period, T = 3  s

the formula for the time period of the pendulum is given by

T = 2\pi \sqrt{\frac{I}{mgd}}    .... (1)

where, I is the moment of inertia of the rod about the pivot point and g is the acceleration due to gravity.

Moment of inertia of the rod about the centre of mass, Ic = mL²/12

By using the parallel axis theorem, the moment of inertia of the rod about the pivot is

I = Ic + md²

I = \frac{mL^{2}}{12}+ md^{2}

Substituting the values in equation (1)

3 = 2 \pi \sqrt{\frac{\frac{mL^{2}}{12}+ md^{2}}{mgd}}

9=4\pi^{2}\times \left ( \frac{\frac{L^{2}}{12}+d^{2}}{gd} \right )

12d² -26.84 d + 2.25 =  0

d=\frac{26.84\pm \sqrt{26.84^{2}-4\times 12\times 2.25}}{24}

d=\frac{26.84\pm 24.75}{24}

d = 2.15 m , 0.087 m

d cannot be more than L/2, so the value of d is 0.087 m.

Thus, the distance between the pivot and the centre of mass of the rod is 0.087 m.

3 0
2 years ago
Two uniform, solid cylinders of radius R and total mass M are connected along their common axis by a short, light rod and rest o
sveta [45]

Explanation:

A) To prove the motion of the center of mass of the cylinders is simple harmonic:

System diagram for given situation is shown in attached Fig. 1

We can prove the motion of the center of mass of the cylinders is simple harmonic if

a_{x} = -\omega^{2}  x

where aₓ is acceleration when attached cylinders move in horizontal direction:

<h3>PROOF:</h3>

rotational inertia for cylinders  is given as:

                                  I=\frac{1}{2}MR^{2} -----(1)

Newton's second law for angular motion is:

                                             ∑τ = Iα ------(2)

For linear motion in horizontal direction it is:

                                             ∑Fₓ = Maₓ ------ (3)

By definition of torque:

                                               τ  = RF --------(4)        

Put (4) and (1) in (2)

                                       RF=\frac{1}{2}MR^{2}\alpha

                                       RF=\frac{1}{2}MR^{2}\alpha

from Fig 3 it can be seen that fs is force by which the cylinders roll without slipping as they oscillate

So above equation becomes

                                   f_{s}=\frac{1}{2}MR\alpha------ (5)

As angular acceleration is related to linear by:

                                          a= R\alpha

Eq (5) becomes

                                    f_{s}=\frac{1}{2}Ma_{x}---- (6)

aₓ shows displacement in horizontal direction

From (3)

                                              ∑Fₓ = Maₓ

Fₓ is sum of fs and restoring force that spring exerts:

                                  \sum F_{x} = f_{s} - kx ----(7)

Put (7) in (3)

                                  f_{s} - kx  = Ma_{x}[/tex] -----(8)

Using (6) in (8)

                               \frac{1}{2}Ma_{x} - kx =Ma_{x}

                                     a_{x} = \frac{2k}{3M} x --- (9)

For spring mass system

                                  a= -\omega^{2} x ----- (10)

Equating (9) and (10)

                                  \omega^{2} = \frac{2k}{3M}

\omega = \sqrt{ \frac{2k}{3M}}

then (9) becomes

                                a_{x} = - \omega^{2}x

(The minus sign says that x and  aₓ  have opposite directions as shown in fig 3)

This proves that the motion of the center of mass of the cylinders is simple harmonic.

<h3 /><h3>B) Time Period</h3>

Time period is related to angular frequency as:

                                   T=\frac{2\pi }{\omega}

                                  T = 2\pi \sqrt{\frac{3M}{2k}

                           

 

5 0
3 years ago
At which location would you expect the LOWEST TEMPERATURE?
MissTica

Answer:

c

Explanation:

3 0
2 years ago
Read 2 more answers
Other questions:
  • According to the exercise principle of balance, a workout should __________.
    14·2 answers
  • Gravity is greater when there is
    7·1 answer
  • The weight of an apple near the surface of the Earth is 1 N. What is the weight of the Earth in the gravitational field of the a
    11·1 answer
  • An atomic mass unit is equal to
    5·2 answers
  • Most of the resistance of the human body comes from the skin, as the interior of the body contains aqueous solutions that are go
    7·1 answer
  • UPVOTE FOR EVERY ANSWER!
    11·1 answer
  • Hiii! Question for those of you who know anything about crystals/stones/rocks.
    10·2 answers
  • A 2kg block has 70J of KE. It then travels 1.5 meters up a hill. As it travels up the hill friction does -12J of work on the blo
    12·1 answer
  • A car is driving across a street. It's change in displacement is 50 m. If it started with a velocity of 5 m/s and ended with a v
    10·1 answer
  • Does increase in metabolism accelerates weight loss?.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!