Once you identify the compound as Ionic<span>, </span>Molecular, or an Acid, follow the individual ... chemicalformulas<span>, write </span>whether<span> the compound is </span>ionic or molecular<span>, and ...</span>
It would be F only because I wouldn’t make sense CI doesn’t exhibit crystalline neither does BR so F
Answer:
The body temperature would rise by 47.85 °C
The amount of water the body evaporates is 4.15 kg.
This makes sense because firstly the value obtained is positive then secondly it is a normal occurrence in the real world that in a place where the temperature is high the body usually produce sweat in order to balance its internal temperature
Explanation:
Considering the relationship (between the heat released and the mass of the object) as shown below
q = msΔT
where q is the heat released per day =
m is the mass of the body = 50 kg
ΔT is the temperature rise = ?
s is the specific heat of water = 
substituting values we have
=
ΔT
ΔT =
= 47.85°C
To maintain the normal body temperature (98.6F = 37°C) the amount of heat released by metabolism activity must be utilized for evaporation of some amount of water
Hence

Note (1 kg = 1000 g)
This makes sense because firstly the value obtained is positive then secondly it is a normal occurrence in the real world that in a place where the temperature is high the body usually produce sweat in order to balance its internal temperature
Answer:
Electrons do not follow circular orbits around the nucleus
Explanation:
Bohr's model of the atom is a combination of elements of quantum theory and classical physics in approaching the problem of the hydrogen atom. According to Neils Bohr, stationary states exist in which the energy of the electron is constant. These stationary states were referred to as circular orbits which encompasses the nucleus of the atom. Each orbit is characterized by a principal quantum number (n). Energy is absorbed or emitted when an electron transits between stationary states in the atom.
Sommerfeld improved on Bohr's proposal by postulating that instead of considering the electron in circular orbits, electrons actually orbited around the nucleus in elliptical orbits, this became a significant improvement on Bohr's model of the atom until the wave mechanical model of Erwin Schrödinger was proposed.