Answer:
If mass increases, force increases.
Explanation:
hope this helps, pls mark brainliest :D
Answer:
The minimum molecular weight of the enzyme is 29.82 g/mol
Explanation:
<u>Step 1:</u> Given data
The volume of the solution = 10 ml = 10*10^-3L
Molarity of the solution = 1.3 mg/ml
moles of AgNO3 added = 0.436 µmol = 0.436 * 10^-3 mmol
<u>Step 2:</u> Calculate the mass
Density = mass/ volume
1.3mg/mL = mass/ 10.0 mL
mass = 1.3mg/mL *10.0 mL = 13mg
<u>Step 3:</u> Calculate minimum molecular weight
Molecular weight = mass of the enzyme / number of moles
Molecular weight of the enzyme = 13mg/ 0.436 * 10^-3 mmol
Molecular weight = 29.82 g/mole
The minimum molecular weight of the enzyme is 29.82 g/mol
Answer:
Cell membrane
B
Explanation:
Capsules, fimbriae, pili, flagella, and even the cell wall
C = vf
c stands for the speed of waves (which is a constant that is 3 x 10^8)
v stands for the wavelength (which is given)
f stands for frequency (what we are solving for)
3 x 10^8 = (1.08 x 10^-6)f
Divide both sides by the given wavelength
f = 2.78 * 10^14 seconds
The answer is in the attachment below: