The molecular formula of the compound is C12H15O3 hence the molar mass of the compound is 207 g/mol.
We need to obtain the number of moles of carbon, hydrogen and oxygen in the compound;
Carbon = 24.91 g/44g/mol × 1 mole of carbon = 0.566 moles
Mass of carbon = 0.566 moles × 12 g/mol = 6.792 g
Number of moles of hydrogen = 6.522 g/18 g/mol × 2 moles = 0.725 moles
Mass of hydrogen = 0.725 moles × 1 g/mol = 0.725 g
Mass of oxygen = 10 - (6.792 g + 0.725 g) = 2.483 g
Number of moles of oxygen = 2.483 g/16 g/mol = 0.155 moles
Now we must divide through by the lowest number of moles;
C - 0.566/0.155 H - 0.725/0.155 O - 0.155/0.155
C - 4 H - 5 O - 1
The simplest formula is C4H5O Recall that the molar mass of the compound lies between 150.0 and 220.0 g/mol
4(12) + 5(1) + 16 = 69
Hence; n = 3 and the molecular formula of the compound is C12H15O3
The molar mass of the compound is; 12(12) + 15(1) + 3(16) = 207 g/mol
Learn more: brainly.com/question/15180604
The full question is shown in the image attached
Answer:
See explanation
Explanation:
In naming an alkane, the first thing we do is to obtain the parent chain by counting the number of carbon atoms in the chain.
When we obtain that, then we identify the substituents and number them in such a way that they have the lowest numbers. The compounds shown have the following names according to the order in which the structures appear in the image attached;
1. 2-methyl propane
2. 2,4-dimethyl heptane
3. 2,2,3,3-tetramethyl butane
4. 5-ethyl-2,4-dimethyl octane
Impurities of brine solution
- calcium chloride
- calcium sulphate
- magnesium chloride
- sodium sulphate
Characteristics of halides of beryllium
- covalent bond
- does not conduct electricity
- In organic solvents, it is soluble.
Answer:
a) FePO4(s)⇄Fe^3+(aq) + PO4^3-(aq)
b) ZnCO3(s)⇄Zn^2+(aq) + CO3^2-(aq)
c) NH4Cl(s)⇄ NH4^+(aq) + Cl^-(aq)
Explanation:
An ionic solid simply means a solid substance that is held together by ionic bonds. When an ionic substance is added to water, the ions interact with the dipoles in water and is pulled apart to form the constituent cation and anion present in the ionic solid. This is the process that we have referred to as dissolution.
The Ksp of an ionic solid is obtained from the chemical equation that shows the dissolution of an ionic solid in water. The Ksp is actually an equilibrium constant that shows the extent of dissolution of an ionic solid in water.
a) FePO4(s)⇄Fe^3+(aq) + PO4^3-(aq)
b) ZnCO3(s)⇄Zn^2+(aq) + CO3^2-(aq)
c) NH4Cl(s)⇄ NH4^+(aq) + Cl^-(aq)