11. You’ve done it correctly
12. Let x^2=y
y^2+13y+40=0
(y+8)(y+5)=0
y=8, 5
Since y=x^2
x^2=8 x^2=5
x=+/-√5 x= +/-2√2
13. x^4-x^2-x^2-8=0
x^4-2x^2-8=0
let x^2=y
Y^2-2y-8=0
(y-4)(y+2)=0
y=4, -2
Since y=x^2
X^2=4 X^2=-2
X= +/- 2 This wouldn’t be a real solution
14. It’s pretty much the same process, just substitute y in for x^2. If you’re confused feel free to ask and I can do it, or you can put it through Photomath
15. You’re on the right track so I’m just going to continue from where you left off
x^2(4x+5)-4(x+5)=0
(x^2-4)(4x+5)=0
x= +/- 2 4x=5
x=5/4 or 1 1/4
Hope this helped :)
The answer to your question is 260,100
Team A) 45 people
Team B) 55 people
A)There are two ways to solve this problem, finding the number of combinations possible for Team B, or the number of combinations possible for Team A.
Team A
It's a given that 20 mathematicians are on team A, which leavs the other 25 people for team A to be chosen from a pool of 80 (100- 20 mathletes)
80-C-25 = 80! / (25!/(80-25)!) =<span>363,413,731,121,503,794,368
</span>or 3.63 x 10^20
Solving using Team B
Same concept, but choosing 55 from a pool of 80 (mathletes excluded)
80-C-25 = 80! / (55!(80-55!) = 363,413,731,121,503,794,368
or 3.63 x 10^20
As you can, we get the same answer for both.
B)
If none of the mathematicians are on team A, then we exclude the 20 and choose 45:
80-C-45 = 80! / (45!(80-45)!) = <span>5,790,061,984,745,3606,481,440
or 5.79 x 10^22
Note that, if you solve from the perspective of Team B (80-C-35), you get the same answer</span>
P(boy) is asking for the probability that a boy will be chosen to read a poem out loud. Since there are 15 boys, we can get the probability by dividing this with the total number of students. This is because out of all the students, there is an equal possibility that each of the 15 boys will be chosen.
ANSWER: The probability that a boy is selected is 0.5357 or 53.57%