The statement "<span>All gaseous mixtures are solutions." is true. This is because there are a number of gaseous molecules present in a volume of gas and they are considered solutions.</span>
The mole fraction of solute in a 3.87 m aqueous solution is 0.0697
<h3>
calculation</h3>
molality = moles of the solute/Kg of the solvent
3.87 m dissolve in 1 Kg of water= 1000g
find the moles of water= mass/molar mass
that is 1000 g/ 18 g/mol= 55.56 moles
mole of solute = 3.87 moles
mole fraction is = moles of solute/moles of solvent
that is 3.87/ 55.56 = 0.0697
The highest sequence for this shell is the number 2, preceding both the s and p in the diagram. This means that the outermost shell is the second level shell. In this shell, there are 7 electrons, 2 in the 2s orbital and 5 in the 2p orbital.
As a side note (not sure if this is a typo), the electron structure for fluorine begins with a 1s2, not a 1s1.
The answer is: Dividing the number of molecules in the sample by Avogadro's number.
The Avogadro’s number is the number of atoms in 12 grams of the isotope carbon-12 (¹²C).
Na is Avogadro number or Avogadro constant (the number of particles, in this example carbon, that are contained in the amount of substance given by one mole).
The Avogadro number has value 6.022·10²³ 1/mol in the International System of Units; Na = 6.022·10²³ 1/mol.
For example:
N(Ba) = 2.62·10²³; number of atoms of barium.
n(Ba) = N(Ba) ÷ Na.
n(Ba) = 1.3·10²⁴ ÷ 6.022·10²³ 1/mol.
n(Ba) = 2.158 mol; amount of substance of barium.
Aluminum, Carbon, Cobalt, Copper, Zinc, Tantalum