1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olganol [36]
3 years ago
13

Which of the following is a fast change to Earth's surface?

Chemistry
1 answer:
victus00 [196]3 years ago
4 0
A because it happens all the time everyday.
You might be interested in
Will give brainliest
slamgirl [31]
I will help you with answering this question.
3 0
3 years ago
A student is given a 2.002 g sample of unknown acid and is told that it might be butanoic acid, a monoprotic acid (HC4H7O2, equa
Elina [12.6K]

<u>Answer:</u> The identity of the unknown acid is butanoic acid or ascorbic acid.

<u>Explanation:</u>

To calculate the number of moles for given molarity, we use the equation:

\text{Molarity of the solution}=\frac{\text{Moles of solute}\times 1000}{\text{Volume of solution (in L)}}

Molarity of NaOH solution = 0.570 M

Volume of solution = 39.55 mL

Putting values in above equation, we get:

0.570M=\frac{\text{Moles of NaOH}\times 1000}{39.55}\\\\\text{Moles of NaOH}=\frac{0.570\times 39.55}{1000}=0.0225mol

The chemical equation for the reaction of NaOH and monoprotic acid follows:

NaOH+HX\rightarrow NaX+H_2O

By Stoichiometry of the reaction:

1 mole of NaOH reacts with 1 mole of HX

So, moles of monoprotic acid = 0.0225 moles

The chemical equation for the reaction of NaOH and diprotic acid follows:

2NaOH+H_2X\rightarrow 2NaX+2H_2O

By Stoichiometry of the reaction:

2 moles of NaOH reacts with 1 mole of diprotic acid

So, moles of diprotic acid = \frac{0.0225}{2}=0.01125moles

To calculate the number of moles, we use the equation:

\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}

  • <u>For butanoic acid:</u>

Mass of butanoic acid = 2.002 g

Molar mass of butanoic acid = 88 g/mol

Putting values in above equation, we get:

\text{Moles of butanoic acid}=\frac{2.002g}{88g/mol}=0.02275mol

  • <u>For L-tartaric acid:</u>

Mass of L-tartaric acid = 2.002 g

Molar mass of L-tartaric acid = 150 g/mol

Putting values in above equation, we get:

\text{Moles of L-tartaric acid}=\frac{2.002g}{150g/mol}=0.0133mol

  • <u>For ascorbic acid:</u>

Mass of ascorbic acid = 2.002 g

Molar mass of ascorbic acid = 176 g/mol

Putting values in above equation, we get:

\text{Moles of ascorbic acid}=\frac{2.002g}{176g/mol}=0.01137mol

As, the number of moles of butanoic acid and ascorbic acid is equal to the number of moles of acid getting neutralized.

Hence, the identity of the unknown acid is butanoic acid or ascorbic acid.

5 0
3 years ago
Calculate the molarity of a solution obtained dissolving 10.0 g of cobalt(Ⅱ) bromide tetrahydrate in enough water to make 450 mL
Vladimir [108]

Answer:

<em><u>The molarity of the CoBr2•4H2O solution is  7.64 × 10-2 M</u></em>

Explanation:

Cobalt (II) bromide tetrahydrate

• Cobalt - A transition metal with Roman numeral (II) → charge: +2 → Co2+

• Bromide - anion from group 7A → -1 charge → symbol: Br-

• Tetrahydrate- tetra- means 4 and hydrate is H2O

The chemical formula of the compound is: CoBr2•4H2O

We then need to determine the number of moles of CoBr2•4H2O since this is the only information missing for us to find molarity. Notice that the volume of the solution is already given.

We’re given the mass of CoBr2•4H2O. We can use the molar mass of CoBr2•4H2O4 to find the moles.

•The molar mass of CoBr2•4H2O is:

CoBr2•4H2O  

1 Co x 58.93 g/mol Co = 58.93 g/mol

2 Br x 79.90 g/mol Br = 159.80 g/mol

8 H  x 1.008 g/mol H = 8.064 g/mol

4 O  x 16.00 g/mol O = 64.00 g/mol

________________________________________

                           Sum = <u>290.79 g/ mo</u>

The moles of CoBr2•4H2O is:

= 10.0 g CoBr2•4H2O x  \frac{ 1 mol  CoBr_2 . 4H_2O}{290.79 g CoBr_2 .  4H_2O}

= <u>0.0344  mol CoBr2•4H</u>

We know that the volume of the solution is 450 mL.

We can now calculate for molarity:

Convert mL to L → 1 mL = 10-3 L

Formula:

Molarity (M)= Mole of solute / Liters of solution

= 0.0344  mol CoBr2•4H  / 450 mL x 1 ml / 10^ -3 L

= 0.0764

=  7.64 × 10-2 mol/L

8 0
4 years ago
Predict the chemical formula for the ionic compound formed by NH4+ and POsub4exponent3-
ss7ja [257]
Formula 1!!!!!!!!!!!!!!!!!!!!!!!!!!
4 0
3 years ago
describe the relationship between the energy of an electron, and its probable distance away from the nucleus of an atom?
mel-nik [20]

Answer: The energy of an electron depends on its location with respect to the nucleus of an atom. The higher the energy of an electron in an atom, the farther is its most probable location from the nucleus.

8 0
3 years ago
Other questions:
  • Which of the mole ratios would be used to set up the below problem?
    13·1 answer
  • A wooden object from the site of an ancient temple has a carbon-14 activity of 10 counts/min compared with a reference piece of
    6·1 answer
  • Individual M has longer limbs and muscles than Individual N. Both individuals lift the same amount of weight from the ground to
    15·1 answer
  • A solution's pH indicates the concentration of which of the following?
    13·1 answer
  • When does the electron shown release the greatest amount of energy as it moves from one level to another?
    8·1 answer
  • 50 points!! i need 3 answers!!!
    5·2 answers
  • What is the mass, in grams, of 50.0L of N2 at STP?
    12·1 answer
  • What is the difference between a substance that low concentration and one high concentration
    11·1 answer
  • What is the chemistry​
    7·2 answers
  • What is the total pressure exerted by a mixture of 48.0 grams of CH4 and 56.0 grams of
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!