Since both terms have the same variable to the same power, you can simply add the coefficients...
14x^7
Angle AOC = 46° Find angle BPO
We have congruent right triangles PAO and PBO, right angles A and B.
So AOC=BOC=46 degrees,
PBO is a right angle so BPO is complementary to BOC, so 42 degrees
Answer: 42 degrees
By converting into parametric equations,
<span><span>x(θ)=r(θ)cosθ=cos2θ<span>cosθ
</span></span><span>y(θ)=r(θ)sinθ=cos2θsinθ</span></span>
By Product Rule,
<span>x'(θ)=−sin2θcosθ−cos2θsinθ</span>
<span>x'<span>(π/2)</span>=−<span>sin(π)</span><span>cos<span>(π/2)</span></span>−<span>cos(π)</span><span>sin<span>(π/2)</span></span>=1</span>
<span>y'(θ)=−sin2θsinθ+cos2θcosθ</span>
<span>y'<span>(π/2)</span>=−<span>sin(π)</span><span>sin<span>(π/2)</span></span>+<span>cos(π)</span><span>cos<span>(π/2)</span></span>=0</span>
So, the slope m of the curve can be found by
<span>m=<span>dy/dx</span><span>∣<span>θ=<span>π2
</span></span></span>= <span><span>y'<span>(π/2)/</span></span><span>x'<span>(π/2)
</span></span></span></span>=0/1
=0
I hope my answer has come to your help. Thank you for posting your question here in Brainly.
The length of the curve
from x = 3 to x = 6 is 192 units
<h3>How to determine the length of the curve?</h3>
The curve is given as:
from x = 3 to x = 6
Start by differentiating the curve function

Evaluate

The length of the curve is calculated using:

This gives
![L =\int\limits^6_3 {\sqrt{1 + [x(9x^2 + 6)^\frac 12]^2}\ dx](https://tex.z-dn.net/?f=L%20%3D%5Cint%5Climits%5E6_3%20%7B%5Csqrt%7B1%20%2B%20%5Bx%289x%5E2%20%2B%206%29%5E%5Cfrac%2012%5D%5E2%7D%5C%20dx)
Expand

This gives

Express as a perfect square

Evaluate the exponent

Differentiate

Expand
L = (6³ + 6) - (3³ + 3)
Evaluate
L = 192
Hence, the length of the curve is 192 units
Read more about curve lengths at:
brainly.com/question/14015568
#SPJ1